欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿邊CB向點(diǎn)B以每秒a個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD⊥BC,交AB于點(diǎn)D,連接PQ.當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)當(dāng)a=2時(shí),解答下列問(wèn)題:
①Q(mào)B=8-2t,PD=$\frac{4}{3}$t.(用含t的代數(shù)式分別表示)
②通過(guò)計(jì)算說(shuō)明,不存在t的值使得四邊形PDBQ為菱形.
(2)當(dāng)a為某個(gè)數(shù)值時(shí),四邊形PDBQ在某一時(shí)刻為菱形,求a的值及四邊形PDBQ為菱形時(shí)t的值.
(3)當(dāng)t=2時(shí),在整個(gè)運(yùn)動(dòng)過(guò)程中,恰好存在線(xiàn)段PQ的中點(diǎn)M到△ABC三邊距離相等,直接寫(xiě)出此刻a的值.

分析 (1)①根據(jù)題意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA=$\frac{PD}{PA}$=$\frac{CB}{AC}$=$\frac{4}{3}$,則可求得QB與PD的值;
②易得△APD∽△ACB,即可求得AD與BD的長(zhǎng),由BQ∥DP,可得當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,即可求得此時(shí)DP與BD的長(zhǎng),由DP≠BD,可判定?PDBQ不能為菱形;
(2)設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長(zhǎng)度,由要使四邊形PDBQ為菱形,則PD=BD=BQ,列方程即可求得答案;
(3)由題意AP=2,PC=4,CQ=2a,又QM=PM,點(diǎn)M到△ABC是三邊距離相等,推出CM是∠PCQ的平分線(xiàn),推出PC=CQ,可得2a=4,推出a=2,經(jīng)檢驗(yàn),此時(shí)點(diǎn)M是△ABC的內(nèi)心,由此即可解決問(wèn)題;

解答 解:(1)①根據(jù)題意得:CQ=2t,PA=t,
∴QB=8-2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA=$\frac{PD}{PA}$=$\frac{BC}{AC}$=$\frac{4}{3}$,
∴PD=$\frac{4}{3}$t.
故答案為:(1)8-2t,$\frac{4}{3}$t.

②不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴$\frac{AD}{AB}$=$\frac{AP}{AC}$,即 $\frac{AD}{10}$=$\frac{t}{6}$,
∴AD=$\frac{5}{3}$t,
∴BD=AB-AD=10-$\frac{5}{3}$t,
∵BQ∥DP,
∴當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,
即8-2t=$\frac{4}{3}$,解得:t=$\frac{12}{5}$.
當(dāng)t=$\frac{12}{5}$時(shí),PD=$\frac{4}{3}$×$\frac{12}{5}$=$\frac{16}{5}$,BD=10-$\frac{5}{3}$×$\frac{12}{5}$=6,
∴DP≠BD,
∴?PDBQ不能為菱形.

(2)設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長(zhǎng)度,
則BQ=8-vt,PD=$\frac{4}{3}$t,BD=10-$\frac{5}{3}$t,
要使四邊形PDBQ為菱形,則PD=BD=BQ,
當(dāng)PD=BD時(shí),即 $\frac{4}{3}$t=10-$\frac{5}{3}$t,解得:t=$\frac{10}{3}$,
當(dāng)PD=BQ,t=$\frac{10}{3}$時(shí),即 $\frac{4}{3}$×$\frac{10}{3}$=8-$\frac{10}{3}$v,解得:v=$\frac{16}{15}$;
當(dāng)點(diǎn)Q的速度為每秒 $\frac{16}{15}$個(gè)單位長(zhǎng)度時(shí),經(jīng)過(guò) $\frac{10}{3}$秒,四邊形PDBQ是菱形.

(3)由題意AP=2,PC=4,CQ=2a,
∵QM=PM,點(diǎn)M到△ABC是三邊距離相等,
∴CM是∠PCQ的平分線(xiàn),
∴PC=CQ,
∴2a=4,
∴a=2,經(jīng)檢驗(yàn),此時(shí)點(diǎn)M是△ABC的內(nèi)心,
∴滿(mǎn)足條件的a的值為2.

點(diǎn)評(píng) 此題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、菱形的判定與性質(zhì)以及一次函數(shù)的應(yīng)用.此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.化簡(jiǎn):($\frac{x+3}{{x}^{2}+x-6}$-$\frac{x}{{x}^{2}-4}$)÷$\frac{1}{x+2}$,并求x=$\frac{1}{2-\sqrt{3}}$時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知a=$\sqrt{2}$-1,b=$\sqrt{2}$+1,求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)P在AB上,點(diǎn)Q在DC的延長(zhǎng)線(xiàn)上,連接DP,QP,且∠APD=∠QPD,PQ交BC于點(diǎn)G.
(1)求證:DQ=PQ;
(2)求AP•DQ的最大值;
(3)若P為AB的中點(diǎn),求PG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為D.求證:AC平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶(hù)用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi).為更好地決策,自來(lái)水公司的隨機(jī)抽取了部分用戶(hù)的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括在右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)此次抽樣調(diào)查的樣本容量是100.
(2)補(bǔ)全頻數(shù)分布直方圖,并求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來(lái)水公司將基本用水量定位每戶(hù)25噸,那么該地區(qū)6萬(wàn)用戶(hù)中約有多少用戶(hù)的用水全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某商場(chǎng)新進(jìn)一種商品,進(jìn)貨價(jià)為30元/件,按物價(jià)局規(guī)定,商品售價(jià)在30~70元之間,(包括30元和70元),經(jīng)過(guò)一段銷(xiāo)售發(fā)現(xiàn),商品銷(xiāo)量y(件/天)與售價(jià)x(元/件)之間滿(mǎn)足一次函數(shù)關(guān)系,如圖所示.
(1)試求出商品銷(xiāo)量y與售價(jià)x的函數(shù)關(guān)系式;
(2)若商場(chǎng)每天銷(xiāo)售該商品的利潤(rùn)為W元,試寫(xiě)出W與x的函數(shù)關(guān)系式;并確定當(dāng)售價(jià)x定為多少元時(shí),該商品每天的銷(xiāo)售利潤(rùn)W最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.計(jì)算$(2\sqrt{2}+3\sqrt{3})^{2}$的結(jié)果等于35+12$\sqrt{6}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,已知∠AOB=60°,點(diǎn)P在邊OA上,OP=10,點(diǎn)M、N在邊OB上,PM=PN,若MN=2,則OM=( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案