【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(
,1),下列結(jié)論:其中正確的個數(shù)是( 。
①a<0;
②b<0;
③c<0;
④
;
⑤a+b+c<0.
![]()
A.1 個B.2 個C.3 個D.4 個
【答案】B
【解析】
根據(jù)二次函數(shù)圖象的開口方向、對稱軸位置、與x軸、y軸的交點(diǎn)坐標(biāo)、過(1,a+b+c)等知識,逐個判斷即可.
解:拋物線開口向下,因此①正確,
對稱軸為x=
>0,可知a、b異號,a<0,則b>0,因此②不正確;
拋物線與y軸交點(diǎn)在正半軸,因此c>0,故③不正確;
拋物線的頂點(diǎn)坐標(biāo)為(﹣
,
),又頂點(diǎn)坐標(biāo)為(
,1),因此④正確;
拋物線與x軸的一個交點(diǎn)在x軸的負(fù)半軸,對稱軸為x=
,
當(dāng)x=1時,y=a+b+c>0,因此⑤不正確;
綜上所述,正確的結(jié)論有2個,
故選:B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在平面直角坐標(biāo)系
中,點(diǎn)
、
、
分別為坐標(biāo)軸上的三個點(diǎn),且
,
,
.
![]()
(1)求經(jīng)過
、
、
三點(diǎn)的拋物線的解析式;
(2)點(diǎn)
是拋物線上一個動點(diǎn),且在直線
的上方,連接
、
,并把
沿
翻折,得到四邊形
,那么是否存在點(diǎn),使四邊形
為菱形?若存在,請求出此時點(diǎn)
的坐標(biāo);若不存在,請說明理由;
(3)如圖2,過拋物線頂點(diǎn)
作直線
軸,交
軸于點(diǎn)
,點(diǎn)
是拋物線上
、
兩點(diǎn)間的一個動點(diǎn)(點(diǎn)
不與
、
兩點(diǎn)重合),直線
、
與直線
分別交于點(diǎn)
、
,當(dāng)點(diǎn)
運(yùn)動時,
是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D是AC的中點(diǎn),點(diǎn)P是BC邊上的動點(diǎn),連接PA、PD.則PA+PD的最小值為( 。
![]()
A.
B.
C.
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點(diǎn)A作AD平分∠BAC交⊙O于點(diǎn)D,過點(diǎn)D作BC的平行線分別交AC、AB的延長線于點(diǎn)E、F,DG⊥AB于點(diǎn)G,連接BD.
(1)求證:△AED∽△DGB;
(2)求證:EF是⊙O的切線;
(3)若
,OA=4,求劣弧
的長度(結(jié)果保留π).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小帆同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗,對函數(shù)
進(jìn)行探究,已知函數(shù)過
,
,
.
(1)求函數(shù)
解析式;
(2)如圖1,在平面直角坐標(biāo)系中畫
的圖象,根據(jù)函數(shù)圖象,寫出函數(shù)的一條性質(zhì) ;
(3)結(jié)合函數(shù)圖象回答下列問題:
①方程
的近似解的取值范圍(精確到個位)是 ;
②若一次函數(shù)
與
有且僅有兩個交點(diǎn),則
的取值范圍是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC于G,GF⊥BC于F,連接EF.
(1)如圖1,求證:四邊形AEFG是菱形;
(2)如圖2,若E為BG的中點(diǎn),過點(diǎn)E作EM∥BC交AC于M,在不添加任何輔助線的情況下,請直接寫出圖2中是CM長
倍的所有線段.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.
![]()
(1)求證:AC2=CD·BC;
(2)過E作EG⊥AB,并延長EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于AC的對稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點(diǎn)M,交AB的延長線于點(diǎn)E,切點(diǎn)為F,連接AF交CD于點(diǎn)N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=
,AN=
,求圓O的直徑的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號的溫控水箱的工作過程是:接通電源后,在初始溫度20℃下加熱水箱中的水;當(dāng)水溫達(dá)到設(shè)定溫度80℃時,加熱停止;此后水箱中的水溫開始逐漸下降,當(dāng)下降到20℃時,再次自動加熱水箱中的水至80℃時,加熱停止;當(dāng)水箱中的水溫下降到20℃時,再次自動加熱,…,按照以上方式不斷循環(huán).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對該型號溫控水箱中的水溫隨時間變化的規(guī)律進(jìn)行了探究.發(fā)現(xiàn)水溫y是時間x的函數(shù),其中y(單位:℃)表示水箱中水的溫度.x(單位:min)表示接通電源后的時間.
下面是小明的探究過程,請補(bǔ)充完整:
(1)下表記錄了32min內(nèi)14個時間點(diǎn)的溫控水箱中水的溫度y隨時間x的變化情況
接通電源后的時間x(單位:min) | 0 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 16 | 18 | 20 | 21 | 24 | 32 | … |
水箱中水的溫度y(單位:℃) | 20 | 35 | 50 | 65 | 80 | 64 | 40 | 32 | 20 | m | 80 | 64 | 40 | 20 | … |
m的值為 ;
(2)①當(dāng)0≤x≤4時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;
當(dāng)4<x≤16時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;
②如圖,在平面直角坐標(biāo)系xOy中,描出了上表中部分?jǐn)?shù)據(jù)對應(yīng)的點(diǎn),根據(jù)描出的點(diǎn),畫出當(dāng)0≤x≤32時,溫度y隨時間x變化的函數(shù)圖象:
(3)如果水溫y隨時間x的變化規(guī)律不變,預(yù)測水溫第8次達(dá)到40℃時,距離接通電源 min.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com