【題目】閱讀下面材料:
小聰遇到這樣一個有關(guān)角平分線的問題:如圖1,在
中,
,
平分
,
,
,求
的長.
小聰思考:因為
平分
,所以可在
邊上取點
,使
,連接
.這樣很容易得到
,經(jīng)過推理能使問題得到解決(如圖2).
請回答:(1)
是 三角形.
(2)
的長為 .
參考小聰思考問題的方法,解決問題:
(3)如圖3,已知
中,
,
平分
,
.求
的長.
![]()
【答案】(1)等腰;(2)5.8;(3)4.3.
【解析】
(1)由已知條件和輔助線的作法,證得△ACD≌△ECD,得到AD=DE,∠A=∠DEC,由于∠A=2∠B,推出∠DEC=2∠B,等量代換得到∠B=∠EDB,得到△BDE是等腰三角形;
(2)由△BDE是等腰三角形可得BE=DE=AD=2.2,結(jié)合EC=AC可得結(jié)論;
(3)在BA邊上取點E,使BE=BC=2,連接DE,得到△DEB≌△DBC,在DA邊上取點F,使DF=DB,連接FE,得到△BDE≌△FDE,即可推出結(jié)論.
(1)
是等腰三角形,
在
與
中,
,
∴
,
∴
,
∵
,
∴
,
∴
,
∴
是等腰三角形;
(2)∵
是等腰三角形,
∴BE=DE,
∵
,![]()
∴BC=BE+EC=2.2+3.6=5.8
故
的長為5.8,
(3)∵
中,
,
∴
,
∵
平分
,
∴
,
在
邊上取點
,使
,連接
,
![]()
則
,
∴
,
∴
,
∴
,
在
邊上取點
,使
,連接
,
則
,
∴
,
∵
,
∴
,
∴
,
∵
,
∴
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的正方形網(wǎng)格中,△ABC和△DEF的頂點都在邊長為1的正方形的頂點上.
(1)填空:∠ABC=__________度,BC=_________;
(2)求證:∠C=∠E.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
![]()
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△
C;平移△ABC,若A的對應(yīng)點
的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△
;
(2)若將△
C繞某一點旋轉(zhuǎn)可以得到△
,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在
軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列分式方程解應(yīng)用題.
為緩解市區(qū)至通州沿線的通勤壓力,北京市政府利用既有國鐵線路富余能力,通過線路及站臺改造,開通了“京通號”城際動車組,每班動車組預(yù)定運送乘客1200人,為提高運輸效率,“京通號”車組對動車車廂進(jìn)行了改裝,使得每節(jié)車廂乘坐的人數(shù)比改裝前多了
,運送預(yù)定數(shù)量的乘客所需要的車廂數(shù)比改裝前減少了4節(jié),求改裝后每節(jié)車廂可以搭載的乘客人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式.
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使三角形AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( 。
![]()
A. 80° B. 90° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動–探究特殊的平行四邊形.
問題情境
如圖,在四邊形
中,
為對角線,
,
.請你添加條件,使它們成為特殊的平行四邊形.
提出問題
![]()
第一小組添加的條件是“
”,則四邊形
是菱形.請你證明;
第二小組添加的條件是“
,
”,則四邊形
是正方形.請你證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,
.
,點
是
上一點,以
為圓心作
,
若
經(jīng)過
、
兩點,求
的半徑,并判斷點
與
的位置關(guān)系.
若
和
、
都相切,求
的半徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
.估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;
.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com