如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣4,0),點B的坐標是(0,b)(b>0).P是直線AB上的一個動點,作PC⊥x軸,垂足為C.記點P關(guān)于y軸的對稱點為P´(點P´不在y軸上),連接PP´,P´A,P´C.設(shè)點P的橫坐標為a.
(1)當b=3時,
①求直線AB的解析式;
②若點P′的坐標是(﹣1,m),求m的值;
(2)若點P在第一象限,記直線AB與P´C的交點為D.當P´D:DC=1:3時,求a的值;
(3)是否同時存在a,b,使△P´CA為等腰直角三角形?若存在,請求出所有滿足要求的a,b的值;若不存在,請說明理由.![]()
(1)①y=
x+3 ②
(2)a=
(3)分情況討論,具體過程見解析
解析試題分析:(1)①設(shè)直線AB的解析式為y=kx+3,
把x=﹣4,y=0代入得:﹣4k+3=0,
∴k=
,
∴直線的解析式是:y=
x+3,
②由已知得點P的坐標是(1,m),
∴m=
×1+3=
;
(2)∵PP′∥AC,
△PP′D∽△ACD,
∴
=
,即
=
,
∴a=
;
(3)以下分三種情況討論.
①當點P在第一象限時,
1)若∠AP′C=90°,P′A=P′C(如圖1)
過點P′作P′H⊥x軸于點H.
∴PP′=CH=AH=P′H=
AC.
∴2a=
(a+4)
∴a=![]()
∵P′H=PC=
AC,△ACP∽△AOB
∴
=
=
,即
=
,
∴b=2
2)若∠P′AC=90°,(如圖2),則四邊形P′ACP是矩形,則PP′=AC.
若△P´CA為等腰直角三角形,則:P′A=CA,
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
∴
=
=1,即
=1
∴b=4
3)若∠P′CA=90°,
則點P′,P都在第一象限內(nèi),這與條件矛盾.
∴△P′CA不可能是以C為直角頂點的等腰直角三角形.
②當點P在第二象限時,∠P′CA為鈍角(如圖3),此時△P′CA不可能是等腰直角三角形;
③當P在第三象限時,∠P′AC為鈍角(如圖4),此時△P′CA不可能是等腰直角三角形.
所有滿足條件的a,b的值為:
,
.![]()
![]()
![]()
![]()
考點:相似三角形的判定與性質(zhì);待定系數(shù)法求一次函數(shù)解析式;等腰直角三角形.
點評:本題主要考查了梯形的性質(zhì),相似三角形的判定和性質(zhì)以及一次函數(shù)的綜合應用,要注意的是(3)中,要根據(jù)P點的不同位置進行分類求解.
科目:初中數(shù)學 來源: 題型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com