已知△ABC中,AC=5,BC=12,∠ACB=90°,P是AB邊上的動點(與點A、B不重合),Q是BC邊上的動點(與點B、C不重合).
(1)如圖所示,當PQ∥AC,且Q為BC的中點時,求線段CP的長;
(2)當PQ與AC不平行時,△CPQ可能為直角三角形嗎?若有可能,請求出線段CQ的長的取值范圍;若不可能,請說明理由.
|
(1)解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12 ∴AB=13. ∵Q是BC的中點. ∴CQ=QB. 又∵PQ∥AC. ∴AP=PB,即P是AB的中點. ∴Rt△ABC,CP= (2)解:當AC與PQ不平行時,只有∠CPQ為直角,△CPQ才可能是直角三角形. 以CQ為直徑作半圓D. 、佼敯雸AD與AB相切時,設(shè)切點為M, 連結(jié)DM,則DM⊥AB,且AC=AM=5. ∴MB=AB-AM=13-5=8. 設(shè)CD=x,則DM=x,DB=12-x. 在Rt△DMB中,DB2=DM2+MB2. 即(12-x)2=x2+82. 解之得:x= ∴CQ=2x= 即當CQ= 形. ②當 ③當0<CQ< ∴當 |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| AM |
| MN |
| MC |
| AP |
| 1 |
| 2 |
| 1 |
| 2 |
| MC |
| AP |
| 1 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com