分析 先由條件可以得出∠EAC=∠BAE,再證明△EAC≌△BAF就可以得出結論.
解答
解:EC=BF,EC⊥BF.
理由:∵AE⊥AB,AF⊥AC,
∴∠EAB=∠CAF=90°,
∴∠EAB+∠BAC=∠CAF+∠BAC,
∴∠EAC=∠BAE.
在△EAC和△BAF中,
∵$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠BAE}\\{AF=AC}\end{array}\right.$,
∴△EAC≌△BAF(SAS),
∴EC=BF.∠AEC=∠ABF
∵∠AEG+∠AGE=90°,∠AGE=∠BGM,
∴∠ABF+∠BGM=90°,
∴∠EMB=90°,
∴EC⊥BF.
點評 本題考查的是全等三角形的判定與性質,垂直的判定的運用,解答時證明三角形全等是關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{12}$ | B. | $\frac{1}{18}$ | C. | $\frac{1}{24}$ | D. | $\frac{1}{36}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 面積為3的正方形的長 | B. | 長為3,寬為2的長方形的對角線長 | ||
| C. | 體積為8的正方體的棱長 | D. | 對角線分別為2、4的菱形邊長 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com