【題目】如圖,在
中,
,
,
是
內(nèi)一點(diǎn),且
,
,
,則
等于( )
![]()
A. 105° B. 120° C. 135° D. 150°
【答案】C
【解析】
把△APC繞點(diǎn)C逆時針旋轉(zhuǎn)90°得到△BDC,根據(jù)旋轉(zhuǎn)的性質(zhì)可得△PCD是等腰直角三角形,BD=AP,∠APC=∠BDC,根據(jù)等腰直角三角形的性質(zhì)求出PD,∠PDC=45°,然后利用勾股定理逆定理判斷出△PBD是直角三角形,∠PDB=90°,再求出∠BDC即可得解.
如圖,![]()
把△APC繞點(diǎn)C逆時針旋轉(zhuǎn)90°得到△BDC,由旋轉(zhuǎn)的性質(zhì)得,△PCD是等腰直角三角形,BD=AP=1,∠APC=∠BDC,所以PD=
PC=2
,∠PDC=45°,∵PD2+BD2=(2
)2+12=9,PB2=32=9,∴PD2+BD2=PB2,∴△PBD是直角三角形,∠PDB=90°,∴∠BDC=90°+45°=135°,∴∠APC=135°,故答案選C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作:如圖,在已知內(nèi)角度數(shù)的三個三角形中,請用直尺從某一頂點(diǎn)畫一條線段,把原三角形分割成兩個等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù)
![]()
(2)拓展,△ABC中,AB=AC,∠A=45°,請把△ABC分割成三個等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù).
![]()
(3)思考在如圖所示的三角形中∠A=30°.點(diǎn)P和點(diǎn)Q分別是邊AC和BC上的兩個動點(diǎn).分別連接BP和PQ把△ABC分割成三個三角形.△ABP,△BPQ,△PQC若分割成的這三個三角形都是等腰三角形,求∠C的度數(shù)所有可能值直接寫出答案即可.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線
分別交
軸、
軸于點(diǎn)
,點(diǎn)
,且
、
滿足
.
(1)求
,
的值;
(2)以
為邊作
,點(diǎn)
在直線
的右側(cè)且
,求點(diǎn)
的坐標(biāo);
(3)若(2)的點(diǎn)
在第四象限(如圖2),
與
交于點(diǎn)
,
與
軸交于點(diǎn)
,連接
,過點(diǎn)
作
交
軸于點(diǎn)
.
①求證
;
②直接寫出點(diǎn)
到
的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是邊長為6的等邊三角形,
是
邊上一動點(diǎn),由
向
運(yùn)動(與
、
不重合),
是
延長線上一動點(diǎn),與點(diǎn)
同時以相同的速度由
向
延長線方向運(yùn)動(
不與
重合),過
作
于
,連接
交
于
.
![]()
(1)當(dāng)
時,求
的長;
(2)在運(yùn)動過程中線段
的長是否發(fā)生變化?如果不變,求出線段
的長;如果發(fā)生改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)
與正比例函數(shù)
的圖像交于點(diǎn)
.
![]()
(1)求正比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像,寫出關(guān)于
的不等式
的解集;
(3)求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥y軸,垂足為B,∠BAO=30°,將△ABO繞點(diǎn)A逆時針旋轉(zhuǎn)到△AB1O1的位置,使點(diǎn)B的對應(yīng)點(diǎn)B1落在直線y=-![]()
x上,再將△AB1O1繞點(diǎn)B1逆時針旋轉(zhuǎn)到△A1B1O2的位置,使點(diǎn)O1的對應(yīng)點(diǎn)O2落在直線y=-
x上,依次進(jìn)行下去…若點(diǎn)B的坐標(biāo)是(0,1),則點(diǎn)O2020的縱坐標(biāo)為__________;
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知
,
為
的角平分線上一點(diǎn),連接
,
;如圖(2),已知
,
,
為
的角平分線上兩點(diǎn),連接
,
,
,
;如圖(3),已知
,
,
,
為
的角平分線上三點(diǎn),連接
,
,
,
,
,
;……,依此規(guī)律,第6個圖形中有全等三角形的對數(shù)是( )
![]()
A.21B.11C.6D.42
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①
;②AG=
GC;③BE+DF=EF;④
.其中正確的是( )
![]()
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△DEF為等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,點(diǎn)E在AB上,點(diǎn)F在射線AC上.
(1)如圖1,若∠BAC=60°,點(diǎn)F與點(diǎn)C重合,
①求證:AF=AE+AD.
②求證:AD∥BC.
(2)如圖2,若AD=AB,那么線段AF,AE,BC之間存在怎樣的數(shù)量關(guān)系.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com