分析 (1)由∠PCD=∠B+∠BPC=∠PCE+∠ECD可知,只要證明∠B=∠PCE=45°即可.
(2)如圖2中,作EK⊥AB于K,EH⊥CM于H.由△EKP≌△EHC,推出EK=EH,因?yàn)镋K⊥AB于K,EH⊥CM于H.所以∠EMK=∠EMC=45°,推出∠AME=∠B,推出ME∥BC,由CA=CB,CM⊥AB,推出AM=BM,CM=AM=BM,推出AE=ED,在Rt△ACD中,EC=AE=ED,此MA=MC,由此推出ME垂直平分線段AC.
(3)結(jié)論:PB2+AP2=2PC2.如圖3中,將△ACP繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△BCN.由∠ABC=∠CBN=45°,推出∠PBN=90°,推出PB2+BN2=PN2,由PC=CN,∠ACP=∠BCN,推出∠PCN=∠ACB=90°,推出PN=$\sqrt{2}$PC,AN=BN,即可推出PB2+AP2=2PC2.
解答 (1)解:結(jié)論:∠BPC=∠ECD.
理由:如圖1中,![]()
∵CA=CB,∠ACB=90°,
∴∠B=∠CAB=45°,
∵EP=EC,∠PEC=90°,
∴∠EPC=∠ECP=45°,
∵∠PCD=∠B+∠BPC=∠PCE+∠ECD,
∵∠B=∠PCE=45°,
∴∠BPC=∠ECD.
(2)證明:如圖2中,作EK⊥AB于K,EH⊥CM于H.![]()
∵∠PMC+∠PEC=180°,
∴∠MPE+∠ECH=180°,
∵∠EPK+∠MPE=180°,
∴∠EPK=∠ECH,
∵∠EKP=∠EHC=90°,EP=EC,
∴△EKP≌△EHC,
∴EK=EH,∵EK⊥AB于K,EH⊥CM于H.
∴∠EMK=∠EMC=45°,
∴∠AME=∠B,
∴ME∥BC,
∵CA=CB,CM⊥AB,
∴AM=BM,CM=AM=BM,
∴AE=ED,
在Rt△ACD中,EC=AE=ED,
∵M(jìn)A=MC,
∴ME垂直平分線段AC.
(3)解:結(jié)論:PB2+AP2=2PC2.
理由:如圖3中,將△ACP繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△BCN.![]()
則∵∠ABC=∠CBN=45°,
∴∠PBN=90°,
∴PB2+BN2=PN2,
∵PC=CN,∠ACP=∠BCN,
∴∠PCN=∠ACB=90°,
∴PN=$\sqrt{2}$PC,AN=BN,
∴PB2+AP2=2PC2.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、角平分線的判定定理、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會(huì)用旋轉(zhuǎn)法添加輔助線構(gòu)造全等三角形,屬于中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若|a|=-a,則a<0 | B. | 若a<0,ab<0,則b>0 | ||
| C. | 若ab>0,則a>0,b>0 | D. | 若a=b,m是有理數(shù),則$\frac{a}{m}$=$\frac{m}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com