欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

在△ABC中,∠BAC=90°,AB=AC=數(shù)學(xué)公式
(1)如圖1,若以點(diǎn)A為圓心、r為半徑的⊙A與BC相切于點(diǎn)D,求r.
(2)如圖2,若⊙A的半徑r=1,點(diǎn)O在BC上運(yùn)動(dòng)(點(diǎn)O與B、C不重合),設(shè)BO=x,△AOC的面積為y.①求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
②如圖2,以點(diǎn)O為圓心,BO長為半徑作圓,當(dāng)⊙O與⊙A相切時(shí),求△AOC的面積.

解:(1)∵△ABC中,∠BAC=90°,AB=AC=
∴△ABC為等腰直角三角形,
∴BC=4,
∵⊙A與BC相切于點(diǎn)D,
∴AD=r,AD⊥BC,
∴AD為BC邊上的中線,
∴r=AD==2,

(2)①作AD⊥BC于點(diǎn)D,
∵△ABC為等腰直角三角形,BC=4,
∴AD為BC邊上的中線,
∴AD==2,
∴S△AOC=,
∵BO=x,△AOC的面積為y,
∴y=4-x(0<x<4),

②過O點(diǎn)作OE⊥AB交AB于E,
∵⊙A的半徑為1,OB=x,
當(dāng)兩圓外切時(shí),
∴OA=1+x,
∵△ABC為等腰直角三角形,
∴∠B=45°,
∴BE=OE=,
∴在△AEO中,AO2=AE2+OE2=(AB-BE)2+OE2
∴(1+x)2=(2-2+(2
∴x=,
∵△AOC面積=y=4-x,
∴△AOC面積=;
當(dāng)兩圓內(nèi)切時(shí),
∴OA=x-1,
∵AO2=AE2+OE2=(AB-BE)2+OE2
∴(x-1)2=(2-2+(2,
∴x=,
∴△AOC面積=y=4-x=4-=,
∴△AOC面積為
分析:(1)由題意即可推出△ABC為等腰直角三角形,AD⊥BC,由AB=AC=2,根據(jù)勾股定理即可推出BD=4,即可推出AD=BD=CD=2;
(2)①②圓O與圓A相切是一個(gè)特殊位置關(guān)系,找出其特點(diǎn):當(dāng)兩圓外切時(shí),OA=1+x,現(xiàn)有的條件沒有辦法作的時(shí)候,就要自己創(chuàng)建一個(gè):過O點(diǎn)作OE⊥AB交AB于E,根據(jù)題意∠B=45°,所以BE=OE=,在△AEO中 AO2=AE2+OE2=(AB-BE)2+OE2,推出(1+x)2=(2-2+(2,求出x=,由①的結(jié)論可知△AOC面積=y=4-x,即可推出△AOC的面積;當(dāng)兩圓內(nèi)切時(shí),OA=x-1,然后把OA代入到 AO2=AE2+OE2=(AB-BE)2+OE2,即可推出x的值,即可推出△AOC面積.
點(diǎn)評:本題主要考查切線的性質(zhì)、勾股定理的運(yùn)用、相切圓的有關(guān)性質(zhì)等知識點(diǎn),解題關(guān)鍵在于根據(jù)題意推出y關(guān)于x的函數(shù)關(guān)系式,在(2)中,求△AOC的面積時(shí),注意分情況進(jìn)行分析,根據(jù)勾股定理,列出關(guān)于x的方程,求出x.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng)精英家教網(wǎng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x.
(1)當(dāng)x為何值時(shí),PQ∥BC;
(2)當(dāng)
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點(diǎn),P是線段BM上的動(dòng)點(diǎn),將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°且點(diǎn)P與點(diǎn)M重合(如圖1),線段CQ的延長線交射線BM于點(diǎn)D,請補(bǔ)全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點(diǎn)P不與點(diǎn)B,M重合,線段CQ的延長線于射線BM交于點(diǎn)D,猜想∠CDB的大。ㄓ煤恋拇鷶(shù)式表示),并加以證明;
(3)對于適當(dāng)大小的α,當(dāng)點(diǎn)P在線段BM上運(yùn)動(dòng)到某一位置(不與點(diǎn)B,M重合)時(shí),能使得線段CQ的延長線與射線BM交于點(diǎn)D,且PQ=QD,請直接寫出α的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以4cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點(diǎn),且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點(diǎn)B為旋轉(zhuǎn)中心,將△BEC按逆時(shí)針旋轉(zhuǎn)∠ABC,得到△BE′A(點(diǎn)C與點(diǎn)A重合,點(diǎn)E到點(diǎn)E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點(diǎn),且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒4cm,的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),BP=CQ
(2)當(dāng)x為何值時(shí),PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案