如圖,已知DE是△ABC的中位線,S△ADE=4,則S△ABC=_____![]()
16
解析考點:相似三角形的判定與性質(zhì);三角形中位線定理.
分析:由DE為三角形ABC的中位線,根據(jù)三角形中位線定理得到DE平行于BC,且DE等于BC的一半,再由兩直線平行得到兩對同位角相等,根據(jù)兩對對應(yīng)角相等的兩三角形相似,可得出三角形ADE與三角形ABC相似,且相似比為1:2,根據(jù)相似三角形的面積之比等于相似比的平方,得到三角形ADE與三角形ABC面積之比,由三角形ADE的面積即可求出三角形ABC的面積.
解:∵DE是△ABC的中位線,
∴DE∥BC,DE=
BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,且相似比為1:2,
∴S△ADE:S△ABC=1:4,又S△ADE=4,
則S△ABC=4S△ADE=16.
故答案為:16
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com