如圖:在△ABC中,AB=2,BC=2
,AC=4,點(diǎn)O是AC的中點(diǎn);回答下列問題:
![]()
(1)∠BAC= °
(2)畫出將△ABC繞點(diǎn)O旋轉(zhuǎn)180°得到的△A1DC1(A→A1 B→D C→C1),寫出四邊形ABCD的形狀。
(3)尺規(guī)作圖:在圖中作出△ABC的高線AE(保留作圖痕跡),并回答在四邊形ABCD的邊上(點(diǎn)A除外)是否存在點(diǎn)F,使∠EAC=∠EFC; 若存在點(diǎn)F,寫出這樣的點(diǎn)F一共有幾個?并直接寫出DF的長。若不存在這樣的點(diǎn)F,請簡要說明理由。
(1)900;(2)平行四邊形;(3)存在一個這樣的點(diǎn),
.
【解析】
試題分析:(1)已知三角形三邊長度,易用勾股定理的逆定理判定該三角形為直角三角形.(2)根據(jù)旋轉(zhuǎn)的性質(zhì)作圖后,由旋轉(zhuǎn)的性質(zhì)易得AB//CD、AD//BC,故四邊形ABCD是平行四邊形;(3)可以把∠EAC看做是弧BC的圓周角,則點(diǎn)E、A、C三點(diǎn)共圓,根據(jù)AE⊥BC,可知AC是圓的直徑,故以點(diǎn)O為圓心,以AC為直徑作圓,圓與四邊形ABCD的邊的交點(diǎn)即為所求點(diǎn)F,此時易得∠AFC=900;因?yàn)椤鰽DC是△ABC繞點(diǎn)O旋轉(zhuǎn)得來的,可根據(jù)三角形的面積及勾股定理求得CF、AF的長度,進(jìn)而可得DF的長度.
試題解析:
解:(1)∵在△ABC中,AB=2,BC=
,AC=4,
∴
;![]()
∴![]()
![]()
∴![]()
(20如下圖所示,△A1DC1即為所求△.由旋轉(zhuǎn)可得:∠BCA=∠DAC;∠BAC=∠DCA
∴AB//CD;AD//BC
∴四邊形ABCD是平行四邊形.
![]()
如上圖所示,AE即為所求高線,有一個符合條件的點(diǎn),點(diǎn)F即為所求點(diǎn).
∵∠AEC=900,點(diǎn)O是AC的中點(diǎn)
∴點(diǎn)E、A、C三點(diǎn)共圓,且點(diǎn)O為圓心,AC為⊙O的直徑,
∴∠EAC=∠EFC;∠AFC=900
∵△ADC是△ABC繞點(diǎn)O旋轉(zhuǎn)得來的,
∴AD=BC;CD=AB
∴![]()
![]()
∴![]()
∴
.
考點(diǎn):1、勾股定理的及逆定理;2、平行四邊形的判定;3、圓周角定理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com