分析 (1)由圓周角推論可得∠A+∠ABD=90°,由切線性質可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;
(2)由角平分線及三角形外角性質可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根據(jù)勾股定理可求得MN的長.
解答 解:(1)如圖,連接OD,![]()
∵AB為⊙O的直徑,
∴∠ADB=90°,即∠A+∠ABD=90°,
又∵CD與⊙O相切于點D,
∴∠CDB+∠ODB=90°,
∵OD=OB,
∴∠ABD=∠ODB,
∴∠A=∠BDC;
(2)∵CM平分∠ACD,
∴∠DCM=∠ACM,
又∵∠A=∠BDC,
∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,
∵∠ADB=90°,DM=1,
∴DN=DM=1,
∴MN=$\sqrt{D{M}^{2}+D{N}^{2}}$=$\sqrt{2}$.
點評 本題主要考查切線的性質、圓周角定理、角平分線的性質及勾股定理,熟練掌握切線的性質:圓的切線垂直于過切點的半徑是解本題的關鍵,.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | M<N | B. | M=N | C. | M>N | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com