如圖,在平面直角坐標系中,O為坐標原點,拋物線y=
x2+2x與x軸相交于O、B,頂點為A,連接OA.
(1)求點A的坐標和∠AOB的度數(shù);
(2)若將拋物線y=
x2+2x向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線y=
x2+2x上,請說明理由;
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
![]()
考點:
二次函數(shù)綜合題.
專題:
探究型.
分析:
(1)由y=
x2+2x得,y=
(x﹣2)2﹣2,故可得出拋物線的頂點A的坐標,令
x2+2x=0得出點B的坐標過點A作AD⊥x軸,垂足為D,由∠ADO=90°可知點D的坐標,故可得出OD=AD,由此即可得出結(jié)論;
(2)由題意可知拋物線m的二次項系數(shù)為
,由此可得拋物線m的解析式過點C作CE⊥x軸,垂足為E;過點A作AF⊥CE,垂足為F,與y軸交與點H,根據(jù)勾股定理可求出OC的長,同理可得AC的長,OC=AC,由翻折不變性的性質(zhì)可知,OC=AC=OC′=AC′,由此即可得出結(jié)論;
(3)過點C′作C′G⊥x軸,垂足為G,由于OC和OC′關(guān)于OA對稱,∠AOB=∠AOH=45°,故可得出∠COH=∠C′OG,再根據(jù)CE∥OH可知∠OCE=∠C′OG,根據(jù)全等三角形的判定定理可知△CEO≌△C′GO,故可得出點C′的坐標把x=﹣4代入拋物線y=
x2+2x進行檢驗即可得出結(jié)論;
(4)由于點P為x軸上的一個動點,點Q在拋物線m上,故設(shè)Q(a,
(a﹣2)2﹣4),由于OC為該四邊形的一條邊,故OP為對角線,由于點P在x軸上,根據(jù)中點坐標的定義即可得出a的值,故可得出結(jié)論.
解答:
解:(1)∵由y=
x2+2x得,y=
(x﹣2)2﹣2,
∴拋物線的頂點A的坐標為(﹣2,﹣2),
令
x2+2x=0,解得x1=0,x2=﹣4,
∴點B的坐標為(﹣4,0),
過點A作AD⊥x軸,垂足為D,
∴∠ADO=90°,
∴點A的坐標為(﹣2,﹣2),點D的坐標為(﹣2,0),
∴OD=AD=2,
∴∠AOB=45°;
(2)四邊形ACOC′為菱形.
由題意可知拋物線m的二次項系數(shù)為
,且過頂點C的坐標是(2,﹣4),
∴拋物線的解析式為:y=
(x﹣2)2﹣4,即y=
x2﹣2x﹣2,
過點C作CE⊥x軸,垂足為E;過點A作AF⊥CE,垂足為F,與y軸交與點H,
∴OE=2,CE=4,AF=4,CF=CE﹣EF=2,
∴OC=
=
=2
,
同理,AC=2
,OC=AC,
由反折不變性的性質(zhì)可知,OC=AC=OC′=AC′,
故四邊形ACOC′為菱形.
(3)如圖1,點C′不在拋物線y=
x2+2x上.
理由如下:
過點C′作C′G⊥x軸,垂足為G,
∵OC和OC′關(guān)于OA對稱,∠AOB=∠AOH=45°,
∴∠COH=∠C′OG,
∵CE∥OH,
∴∠OCE=∠C′OG,
又∵∠CEO=∠C′GO=90°,OC=OC′,
∴△CEO≌△C′GO,
∴OG=4,C′G=2,
∴點C′的坐標為(﹣4,2),
把x=﹣4代入拋物線y=
x2+2x得y=0,
∴點C′不在拋物線y=
x2+2x上;
(4)存在符合條件的點Q.
∵點P為x軸上的一個動點,點Q在拋物線m上,
∴設(shè)Q(a,
(a﹣2)2﹣4),
∵OC為該四邊形的一條邊,
∴OP為對角線,
∴
=0,解得x1=6,x2=4,
∴P(6,4)或(﹣2,4)(舍去),
∴點Q的坐標為(6,4).
![]()
![]()
點評:
本題考查的是二次函數(shù)綜合題,涉及到拋物線的性質(zhì)、菱形的判定與性質(zhì)、平行四邊形的性質(zhì)等知識,難度適中.
科目:初中數(shù)學 來源: 題型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com