【題目】圖①是由一個(gè)完全相同的小正方體組成的立體圖形,將圖①中的一個(gè)小正方體改變位置后如圖②,則三視圖發(fā)生改變的是( )
![]()
A. 主視圖,俯視較和左視圖都改變
B. 左視圖
C. 俯視圖
D. 主視圖
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m:y=kx(k>0)與直線n:
相交于點(diǎn)C,點(diǎn)A、B為直線n與坐標(biāo)軸的交點(diǎn),∠COA=60°,點(diǎn)P從O點(diǎn)出發(fā)沿線段OC向點(diǎn)C勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿線段AO向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)k= ;
(2)記△POQ的面積為S,求t為何值時(shí)S取得最大值;
(3)當(dāng)△POQ的面積最大時(shí),以PQ為直徑的圓與直線n有怎樣的位置關(guān)系,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的布袋里裝有4個(gè)大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,-2,3,-4,小明先從布袋中隨機(jī)摸出一個(gè)球(不放回去),再從剩下的3個(gè)球中隨機(jī)摸出第二個(gè)乒乓球.
(1)共有 種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)
的圖象與反比例函數(shù)
的圖象相交于第一、三象限內(nèi)的
兩點(diǎn),與
軸交于點(diǎn)
.
⑴求該反比例函數(shù)和一次函數(shù)的解析式;
⑵在
軸上找一點(diǎn)
使
最大,求
的最大值及點(diǎn)
的坐標(biāo);
⑶直接寫出當(dāng)
時(shí),
的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,
,
.點(diǎn)
從點(diǎn)
出發(fā),以每秒
個(gè)單位長度的速度,沿
邊向終點(diǎn)
運(yùn)動(dòng),過點(diǎn)
作
交折線
于點(diǎn)
,過點(diǎn)
作
交邊
或邊
于點(diǎn)
,連結(jié)
,設(shè)點(diǎn)
的運(yùn)動(dòng)時(shí)間為
秒.
![]()
(1)當(dāng)點(diǎn)
在
邊上時(shí),
的長為________(用含
的代數(shù)式表示 )
(2)當(dāng)點(diǎn)
為AC邊的中點(diǎn)時(shí),求
的值.
(3)設(shè)
的面積為
,求
與
之間的函數(shù)關(guān)系式.
(4)當(dāng)邊
與
的邊垂直時(shí),直接寫出
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=x+1與y軸交于點(diǎn)A,與雙曲線
(x>0)交于點(diǎn)B(2,a).
![]()
(1)求a,k的值.
(2)點(diǎn)P是直線l上方的雙曲線上一點(diǎn),過點(diǎn)P作平行于y軸的直線,交直線l于點(diǎn)C,過點(diǎn)A作平行于x軸的直線,交直線PC于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①若m=
,試判斷線段CP與CD的數(shù)量關(guān)系,并說明理由;②若CP>CD,請結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:① abc>0;② 2a+b=0;③ 當(dāng)m≠1時(shí),a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,
其中正確的有( )
![]()
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F.
(1)求證:AE為⊙O的切線;
(2)當(dāng)BC=8,AC=12時(shí),求EM的長;
(3)在(2)的條件下,可求出⊙O的半徑為 ,線段BG的長 .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com