如圖,已知拋物線
:
的頂點(diǎn)為
,與
軸相交于
兩點(diǎn)(點(diǎn)
在點(diǎn)
的左邊),點(diǎn)
的橫坐標(biāo)是
.
(1)求
點(diǎn)坐標(biāo)及
的值;
(2)如圖1,拋物線
與拋物線
關(guān)于
軸對(duì)稱,將拋物線
向左平移,平移后的拋物線記為
,
的頂點(diǎn)為
,當(dāng)點(diǎn)
關(guān)于點(diǎn)
成中心對(duì)稱時(shí),求
的解析式
;
(3)如圖2,點(diǎn)
是
軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線
繞點(diǎn)
旋轉(zhuǎn)
后得到拋物線
.拋物線
的頂點(diǎn)為
,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)
的坐標(biāo).
![]()
解:(1)由拋物線C1:
得頂點(diǎn)P的坐標(biāo)為(2,5)………….1分
∵點(diǎn)A(-1,0)在拋物線C1上∴
.………………2分
(2)連接PM,作PH⊥x軸于H,作MG⊥x軸于G..
∵點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱,
∴PM過點(diǎn)A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴頂點(diǎn)M的坐標(biāo)為(
,5).………………………3分
∵拋物線C2與C1關(guān)于x軸對(duì)稱,拋物線C3由C2平移得到
∴拋物線C3的表達(dá)式
. …………4分
(3)∵拋物線C4由C1繞x軸上的點(diǎn)Q旋轉(zhuǎn)180°得到
∴頂點(diǎn)N、P關(guān)于點(diǎn)Q成中心對(duì)稱.
由(2)得點(diǎn)N的縱坐標(biāo)為5.
設(shè)點(diǎn)N坐標(biāo)為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.
∵旋轉(zhuǎn)中心Q在x軸上,
∴EF=AB=2AH=6.
∴EG=3,點(diǎn)E坐標(biāo)為(
,0),H坐標(biāo)為(2,0),
R坐標(biāo)為(m,-5).
根據(jù)勾股定理,得
①當(dāng)∠PNE=90º時(shí),PN2+ NE2=PE2,
解得m=
,∴N點(diǎn)坐標(biāo)為(
,5)
②當(dāng)∠PEN=90º時(shí),PE2+ NE2=PN2,
解得m=
,∴N點(diǎn)坐標(biāo)為(
,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
綜上所得,當(dāng)N點(diǎn)坐標(biāo)為(
,5)或(
,5)時(shí),以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形.…………………………………………………………………………………8分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| c2 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com