欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,將一張矩形紙片ABCD沿EF折疊,使點B與點D重合,C點落在點M處.
(1)若AB=4,AD=8,試求出重合部分△EBF的面積;
(2)連接DF,判斷四邊形DFBE的形狀,并說明理由.

解:(1)∵矩形ABCD沿EF折疊點B與點D重合,
∴BE=DE,BM=CD,∠EBM=∠ADC=90°,∠M=∠C=90°,
∵AB=CD,
∴AB=BM,
設(shè)BE=DE=x,則AE=AB-DE=8-x,
在Rt△ABE中,AB2+AE2=BE2,
即42+(8-x)2=x2,
解得x=5,
∴BE=5,
∵∠ABE+∠EBF=∠ABC=90°,
∠MBF+∠EBF=∠EBM=90°,
∴∠ABE=∠MBF,
在△ABE和△MBF中,
,
∴△ABE≌△MBF(ASA),
∴BF=BE=5,
∴△EBF的面積=×5×4=10;

(2)四邊形DFBE是菱形.
理由如下:由翻折的性質(zhì)可得,DF=BF,
∴BE=DE=DF=BF,
∴四邊形DFBE是菱形.
分析:(1)根據(jù)翻折的性質(zhì)可得BE=DE,BM=CD,∠EBM=∠ADC=90°,設(shè)BE=DE=x,表示出AE=8-x,然后在Rt△ABE中,利用勾股定理列出方程求出x的值,即為BE的值,再根據(jù)同角的余角相等求出∠ABE=∠MBF,然后利用“角邊角”證明△ABE和△MBF全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=BE,再根據(jù)三角形的面積公式列式計算即可得解;
(2)根據(jù)翻折的性質(zhì)可得DF=BF,然后求出BE=DE=DF=BF,再根據(jù)四條邊都相等的四邊形是菱形解答.
點評:本題考查了翻折變換的性質(zhì),勾股定理的應(yīng)用,全等三角形的判定與性質(zhì),四條邊都相等的四邊形是菱形,熟記翻折前后的圖形能夠重合得到相等的角與邊是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,將一張矩形紙片ABCD折疊,使AB落在AD邊上,然后打開,折痕為AE,頂點B的落點為F.你認(rèn)為四邊形ABEF是什么特殊四邊形?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖:將一張矩形紙片ABCD的角C沿著GF折疊(F在BC邊上,不與B、C重合)使得C點落在矩形ABCD內(nèi)部的E處,F(xiàn)H平分∠BFE,則∠GFH的度數(shù)α滿足( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙片(矩形ABCD)按如圖方式折疊,使頂點B和D重合,折痕為EF.
(1)連接EB,求證:四邊形EBFD是菱形;
(2)若AB=3,BC=9,求重疊部分三角形DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙片A′B′C′D′沿EF折疊,使點B′落在A′D′邊上的點B處;沿BG折疊,使點D′落在點D處,且BD過F點.
(1)試判斷四邊形BEFG的形狀,并證明你的結(jié)論;
(2)當(dāng)∠BFE為多少度時,四邊形BEFG是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙片對折再對折,然后沿著圖中的虛線剪下一個角(虛線與折痕成45°角),打開,則所得的平面圖形是
正方形
正方形

查看答案和解析>>

同步練習(xí)冊答案