科目:初中數學 來源:2011-2012學年廣東省惠州市惠城區(qū)十八校九年級4月模擬考試數學卷(解析版) 題型:解答題
如圖,在平面直角坐標系中,點O是坐標原點,四邊形AOCB是梯形,AB∥OC,點A的坐標為(0,8),點C的坐標為(10,0),OB=OC.點P從C點出發(fā),沿線段CO以5個單位/秒的速度向終點O勻速運動,過點P作PH⊥OB,垂足為H.
![]()
(1)求點B的坐標;
(2)設△HBP的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數關系式;當t為何值時,△HBP的面積最大,并求出最大面積;
(3)分別以P、H為圓心,PC、HB為半徑作⊙P和⊙H,當兩圓外切時,求此時t的值.
【解析】(1)根據已知得出OB=OC=10,BN=OA=8,即可得出B點的坐標;
(2)利用△BON∽△POH,得出對應線段成比例,即可得出S與t之間的函數關系式;從而求出△HBP的最大面積;
(3)若⊙P和⊙H兩圓外切 ,則須HB+PC=HP,從而求解
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com