如圖,AB是⊙0的弦,BC與⊙0相切于點B,連接OA、OB.若∠ABC=70°,則∠A等于( 。
![]()
|
| A. | 15° | B. | 20° | C. | 30° | D. | 70° |
考點:
切線的性質。
分析:
由BC與⊙0相切于點B,根據(jù)切線的性質,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度數(shù),然后由OA=OB,利用等邊對等角的知識,即可求得∠A的度數(shù).
解答:
解:∵BC與⊙0相切于點B,
∴OB⊥BC,
∴∠OBC=90°,
∵∠ABC=70°,
∴∠OBA=∠OBC﹣∠ABC=90°﹣70°=20°,
∵OA=OB,
∴∠A=∠OBA=2
0°.
故選B.
點評:
此題考查了切線的性質與等腰三角形的性質.此題比較簡單,注意數(shù)形結合思想的應用,注意圓的切線垂直于經(jīng)過切點的半徑定理的應用.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com