【題目】如圖,AB=20cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB以2cm/s的速度勻速向終點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿BA以4cm/s的速度勻速向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts
(1)填空:PA= cm;BQ= cm;(用含t的代數(shù)式表示)
(2)當(dāng)P、Q兩點(diǎn)相遇時(shí),求t的值;
(3)探究:當(dāng)PQ兩點(diǎn)相距5cm時(shí),求t的值.
![]()
【答案】(1)2t;4t;(2)t的值為
;(3)當(dāng)PQ兩點(diǎn)相距5cm時(shí),t的值為
或
.
【解析】
(1)根據(jù)點(diǎn)
,
的速度結(jié)合路程
速度
時(shí)間,即可得出結(jié)論;
(2)根據(jù)
,可得出關(guān)于
的一元一次方程,解之即可得出結(jié)論;
(3)分兩點(diǎn)相遇前及相遇后兩種情況考慮:點(diǎn)
,
相遇前,根據(jù)
可得出關(guān)于
的一元一次方程,解之即可得出
的值;點(diǎn)
,
相遇后,據(jù)
可得出關(guān)于
的一元一次方程,解之即可得出
的值.綜上,此題得解.
解:(1)
點(diǎn)
的速度為
,點(diǎn)
的速度為
,
當(dāng)運(yùn)動(dòng)時(shí)間為
時(shí),
,
.
故答案為:
;
.
(2)依題意,得:
,
解得:
.
答:當(dāng)
、
兩點(diǎn)相遇時(shí),
的值為
.
(3)點(diǎn)
,
相遇前,
,
解得:
;
點(diǎn)
,
相遇后,
,
解得:
.
答:當(dāng)
兩點(diǎn)相距
時(shí),
的值為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】窗戶的形狀如圖所示(圖中長(zhǎng)度單位:cm),其中上部是半圓形,下部是邊長(zhǎng)相同的四個(gè)小正方形. 已知下部小正方形的邊長(zhǎng)是acm.
(1)計(jì)算窗戶的面積(計(jì)算結(jié)果保留π).
(2)計(jì)算窗戶的外框的總長(zhǎng)(計(jì)算結(jié)果保留π).
(3)安裝一種普通合金材料的窗戶單價(jià)是175元/平方米,當(dāng)a=50cm時(shí),請(qǐng)你幫助計(jì)算這個(gè)窗戶安裝這種材料的費(fèi)用(π≈3.14,窗戶面積精確到0.1).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
,
分別為數(shù)軸上的兩點(diǎn),
點(diǎn)對(duì)應(yīng)的數(shù)為-20,
點(diǎn)對(duì)應(yīng)的數(shù)為100.
![]()
(1)請(qǐng)寫出![]()
中點(diǎn)
所對(duì)應(yīng)的數(shù);
(2)現(xiàn)有一只電子螞蚊
從
點(diǎn)出發(fā),以6單位秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻
恰好從
點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的
點(diǎn)相遇,求
點(diǎn)對(duì)應(yīng)的數(shù).
(3)若當(dāng)電子螞蟻
從
點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻
恰好從
點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的
點(diǎn)相遇,求
點(diǎn)對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線且AD=4,F是AD上的動(dòng)點(diǎn),E是AC邊上的動(dòng)點(diǎn),則CF+EF的最小值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定a☆b=ab2﹣2ab+b.
如:2☆(﹣3)=2×(﹣3)2﹣2×2×(﹣3)+(﹣3)=27
(1)求(﹣4)☆7的值;
(2)若(1﹣3x)☆(﹣4)=32,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, ⊙O的半徑是1,直線AB與x軸交于點(diǎn)P(x,0),且與x軸的正半軸夾角為45°,若直線AB與⊙O有公共點(diǎn),則x值的范圍是( )
![]()
A. -1≤x≤1 B. -
≤x≤
C. -
<x<
D. 0≤x≤![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若線段上的一個(gè)點(diǎn)把這條線段分成1:2的兩條線段,則稱這個(gè)點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且AC:CB=1:2,則點(diǎn)C是線段AB的一個(gè)三等分點(diǎn).
(1)如圖2,數(shù)軸上點(diǎn)A、B表示的數(shù)分別為-4、12,點(diǎn)D是線段AB的三等分點(diǎn),求點(diǎn)D在數(shù)軸上所表示的數(shù);
(2)在(1)的條件下,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度在數(shù)軸上向右運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),在數(shù)軸上先向左運(yùn)動(dòng),與點(diǎn)P重合后立刻改變方向與點(diǎn)P同向而行,且速度始終為每秒3個(gè)單位長(zhǎng)度,點(diǎn)P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①用含t的式子表示線段AQ的長(zhǎng)度;
②當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求點(diǎn)P在數(shù)軸上所表示的數(shù).
![]()
圖1
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,BD、CE分別是AC、AB上的高,BD與CE交于點(diǎn)O.BD=CE
![]()
(1)問△ABC為等腰三角形嗎?為什么?
(2)問點(diǎn)O在∠A的平分線上嗎?為什么?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com