矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線
與BC邊相交于點(diǎn)D.
![]()
(1)求點(diǎn)D的坐標(biāo);
(2)若拋物線
經(jīng)過A、D兩點(diǎn),試確定此拋物線的解析式;
(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線AD交于點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、A、M為頂點(diǎn)的三角形與△ABD相似,求符合條件的所有點(diǎn)P的坐標(biāo).
(1)點(diǎn)D的坐標(biāo)為(2,3);
(2) 拋物線的解析式為
;
(3) 符合條件的點(diǎn)P有兩個(gè),P1 (3,0)、P2 (3,-4).
【解析】
試題分析:(1)有題目所給信息可以知道,BC線上所有的點(diǎn)的縱坐標(biāo)都是3,又有D在直線
上,代入后求解可以得出答案.
(2)A、D,兩點(diǎn)坐標(biāo)已知,把它們代入二次函數(shù)解析式中,得出兩個(gè)二元一次方程,聯(lián)立求解可以得出答案.
(3)由題目分析可以知道∠B=90°,以P、A、M為頂點(diǎn)的三角形與△ABD相似,所以應(yīng)有∠APM、∠AMP或者∠MAP等于90°,很明顯∠AMP不可能等于90°,所以有兩種情況.
解:(1) ∵四邊形OABC為矩形,C(0,3)
∴BC∥OA,點(diǎn)D的縱坐標(biāo)為3.
∵直線
與BC邊相交于點(diǎn)D,
∴
. ∴點(diǎn)D的坐標(biāo)為(2,3).
(2) ∵若拋物線
經(jīng)過A(6,0)、D(2,3)兩點(diǎn),
∴![]()
解得:
∴拋物線的解析式為![]()
(3) ∵拋物線
的對(duì)稱軸為x=3,
設(shè)對(duì)稱軸x=3與x軸交于點(diǎn)P1,∴BA∥MP1,
∴∠BAD=∠AMP1.
![]()
①∵∠AP1M=∠ABD=90°,∴△ABD∽△AMP1.
∴P1 (3,0).
②當(dāng)∠MAP2=∠ABD=90°時(shí),△ABD∽△MAP2.
∴∠AP2M=∠ADB
∵AP1=AB,∠AP1 P2=∠ABD=90°
∴△AP1 P2≌△ABD
∴P1 P2=BD=4
∵點(diǎn)P2在第四象限,∴P2 (3,-4).
∴符合條件的點(diǎn)P有兩個(gè),P1 (3,0)、P2 (3,-4).
考點(diǎn):二次函數(shù)綜合題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| 2 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 3 |
| 1 |
| 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com