分析 (1)當(dāng)旋轉(zhuǎn)到圖③所示位置時,α=45°;
(2)若AB∥DC,則∠BAC=∠C=30°,得到α=∠BAC′-∠BAC=45°-30°=15°;
(3)連接CC′,BD,BO,在△BDO和△OCC′中,利用三角形內(nèi)角和定理得到∠BDO+∠DBO=∠OCC′+∠OC′C,即可求得∠DBC′+∠CAC′+∠BDC=105°,即得到∠DBC′+∠CAC′+∠BDC值的大小不變.
解答 解:(1)當(dāng)旋轉(zhuǎn)到圖2所示位置時,
∵AB邊旋轉(zhuǎn)了45°,
∴α=45°,
故答案為:45°;
(2)如圖3,
∵AB∥DC,
∴∠BAC=∠C=30°,
∴α=∠BAC′-∠BAC=45°-30°=15°,
所以當(dāng)α=15°時,AB∥DC,
故答案為:15°;
(3)當(dāng)0°<α≤45°時,∠DBC′+∠CAC′+∠BDC值的大小不變.![]()
連接CC′,BD,BO,在△BDO和△OCC′中,∠BOD=∠COC′,
∴∠BDO+∠DBO=∠OCC′+∠OC′C,
∴∠DBC′+∠CAC′+∠BDC=∠BDO+∠α+∠DBO=∠OCC′+∠OC′C+∠α,
=180°-∠ACD-∠AC′B,
=180°-45°-30°
=105°,
∴當(dāng)0°<α≤45°時,∠DBC′+∠CAC′+∠BDC值的大小不變.
點評 本題主要考查了旋轉(zhuǎn)的性質(zhì)和三角形的內(nèi)角和定理,旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{4}{x}$+y=5 | B. | x-y=2 | C. | $\frac{1}{2}$x2+y=0 | D. | 2x+3y=z |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 114 | B. | 123 | C. | 132 | D. | 147 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com