【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過點(diǎn)F的反比例函數(shù)
(k>0)圖象與AC邊交于點(diǎn)E.
(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);
(2)若△OEF的面積為9,求反比例函數(shù)的解析式.
![]()
【答案】(1)E(
,4),F(xiàn)(6,
);(2) 反比例函數(shù)的解析式為y=
.
【解析】試題分析:(1)易得E點(diǎn)的縱坐標(biāo)為4,F點(diǎn)的橫坐標(biāo)為6,把它們分別代入反比例函數(shù)y=
(k>0)即可得到E點(diǎn)和F點(diǎn)的坐標(biāo);
(2)分別用矩形面積和能用圖中的點(diǎn)表示出的三角形的面積表示出所求的面積,解方程即可求得k的值.
試題解析:(1)E(
,4),F(6,
);
(2)∵E,F兩點(diǎn)坐標(biāo)分別為E(
,4),F(6,
),
∴S△ECF=
ECCF=
(6-
)(4-
),
∴S△EOF=S矩形AOBC-S△AOE-S△BOF-S△ECF
=24-
k-
k- S△ECF
=24-k -
(6-
)(4-
),
∵△OEF的面積為9,
∴24-k -
(6-
)(4-
)=9,
整理得,
=6,
解得k =12.
∴反比例函數(shù)的解析式為=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到x軸的距離等于2的點(diǎn)組成的圖形是
A. 過點(diǎn)0,2且與x軸平行的直線
B. 過點(diǎn)2,0且與y軸平行的直線
C. 過點(diǎn)0,2且與x軸平行的直線
D. 分別過0,2和0,2且與x軸平行的兩條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,y1)、B(1,y2)在二次函數(shù)y=x2+2x+2的圖象上,y1與y2的大小關(guān)系為( 。
A.y1>y2B.y1=y2C.y1<y2D.y1≤y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c是三角形的三邊長(zhǎng),如果滿足
=0,則三角形的形狀是( )
A.底與邊不相等的等腰三角形
B.等邊三角形
C.鈍角三角形
D.直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由“趙爽弦圖”變化得到的,它由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3 . 若S1+S2+S3=15,則S2的值是( 。![]()
A.3
B.![]()
C.5
D.
?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖24,在平面直角坐標(biāo)系中,圓D與
軸相切于點(diǎn)C(0,4),與
軸相交于A、B兩點(diǎn),且AB=6
(1)D點(diǎn)的坐標(biāo)是 ,圓的半徑為 ;
(2)求經(jīng)過C、A、B三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)拋物線的頂點(diǎn)為F,試證明直線AF與圓D相切;
(4)在
軸下方的拋物線上,是否存在一點(diǎn)N,使
面積最大,最大面積是多少?并求出
點(diǎn)坐標(biāo).
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.
(1)說明方程x2-3x+2=0是倍根方程;
(2)說明:若(x-2)(mx+n)=0是倍根方程,則4m2+5mn+n2=0;
(3)如果方程ax2+bx+c=0是倍根方程,且相異兩點(diǎn)M(1+t,s),N(4-t,s)都在拋物線y=ax2+bx+c上,試說明方程ax2+bx+c=0的一個(gè)根為
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com