【題目】已知二次函數(shù)
的圖象如圖所示,下列有
個結(jié)論:①
;②
;③
;④
.請你將正確結(jié)論的番號都寫出來_______.
![]()
【答案】①②③
【解析】
根據(jù)拋物線的性質(zhì)逐一判斷即可求解:①根據(jù)拋物線與x軸有兩個交點可得
,據(jù)此判斷即可;②首先根據(jù)拋物線開口向上可得
,然后根據(jù)拋物線對稱軸為直線
可得
,最后由拋物線與y軸的交點在x軸上方可得
,所以
,據(jù)此即可判定;③根據(jù)二次函數(shù)
可得當
時,
,所以
,據(jù)此判斷即可;④首先根據(jù)當
時,
,可得
,所以
,然后根據(jù)無法確定
是否等于﹣1,也就無法確定
是否等于1,據(jù)此判斷即可.
∵拋物線與x軸有兩個交點
∴
,
∴結(jié)論①正確;
∵拋物線開口向上
∴
,
∵拋物線對稱軸為直線![]()
∴
,
∵拋物線與y軸的交點在x軸上方
∴
,
∴
,
∴結(jié)論②正確;
當
時,
,
∴![]()
∴
,
∴結(jié)論③正確;
當
時,
,
∴
,
∴
,
∵無法確定
是否等于﹣1,
∴也就無法確定
是否等于1,
∴結(jié)論④不正確.
故答案為:①②③
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y= -
x2+bx+c與x軸負半軸交于A點,與x軸正半軸交于B點,與y軸正半軸交于C點,CO=BO,AB=14.
![]()
(1)求拋物線的解析式;
(2)如圖2, 點M、N在第一象限內(nèi)拋物線上,M在N點下方,連CM、CN,∠OCN+∠OCM=180°, 設(shè)M點橫坐標為m,N點橫坐標為n,求m與n的函數(shù)關(guān)系式(n是自變量);
(3)如圖3, 在(2)條件下,連AN交CO于E,過M作MF⊥AB于F,連BM、EF,若∠AFE=2∠FMB=2β, 求N點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點A、點B在⊙O上,∠AOB=90°,OA=6,點C在OA上,且OC=2AC,點D是OB的中點,點M是劣弧AB上的動點,則CM+2DM的最小值為_______.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點,與y軸交于點C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=
,試求m的最大值及此時點P的坐標;
(3)在(2)的條件下,點Q是x軸上的一個動點,點N是坐標平面內(nèi)的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數(shù)
的圖象和
都在第一象限內(nèi),
,
軸,且
,點
的坐標為
.
![]()
(1)若反比例函數(shù)
的圖象經(jīng)過點B,求此反比例函數(shù)的解析式;
(2)若將
向下平移
(m>0)個單位長度,
,
兩點的對應(yīng)點同時落在反比例函數(shù)圖象上,求
的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點O是對角線AC,BD的交點,點E在BC邊上(點E不和BC的端點重合),且BE=
BC,連接AE交OB于點F,過點B作AE的垂線BG交OC于點G,連接GE.
(1)求證:OF=OG;
(2)用含
的代數(shù)式表示tan∠OBG的值;
(3)如圖2,當∠GEC=90°時,求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進A、B兩種新型節(jié)能臺燈,已知B型節(jié)能臺燈每盞進價比A型的多40元,且用3000元購進的A型節(jié)能臺燈與用5000元購進的B型節(jié)能臺燈的數(shù)量相同.
(1)求每盞A型節(jié)能臺燈的進價是多少元?
(2)商場將購進A、B兩型節(jié)能臺燈100盞進行銷售,A型節(jié)能臺燈每盞的售價為90元,B型節(jié)能臺燈每盞的售價為140元,且B型節(jié)能臺燈的進貨數(shù)量不超過A型節(jié)能臺燈數(shù)量的2倍.應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時利最多?此時利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某教研機構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
類別 | 重視 | 一般 | 不重視 |
人數(shù) | a | 15 | b |
(1)求表格中a,b的值;
(2)請補全統(tǒng)計圖;
(3)若某校共有初中生2000名,請估計該校“重視課外閱讀名著”的初中生人數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D為BC的中點,點E在AB上,AD,CE交于點F,AE=EF=4,FC=9,則cos∠ACB的值為( 。
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com