【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k<0),經(jīng)過(guò)點(diǎn)(6,0),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y=
(x>0)的圖象G交于A,B兩點(diǎn).
(1)求直線的表達(dá)式;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn).記圖象G在點(diǎn)A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當(dāng)m=2時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo) ;
②若區(qū)域W內(nèi)恰有3個(gè)整數(shù)點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
![]()
【答案】(1)y=﹣
x+3;(2)①(3,1);②1≤m<2.
【解析】
(1)借助直線與x軸、y軸的交點(diǎn)坐標(biāo)表示出直線與坐標(biāo)軸圍成的三角形的兩條直角邊長(zhǎng),利用面積是9,求出直線與y軸的交點(diǎn)為C(0,3),利用待定系數(shù)法求出直線的表達(dá)式;
(2)①先求出當(dāng)m=2時(shí),兩函數(shù)圖象的交點(diǎn)坐標(biāo),再結(jié)合圖象找到區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo);②利用特殊值法求出圖象經(jīng)過(guò)點(diǎn)(1,1)、(2,1)時(shí),反比例函數(shù)中m的值,結(jié)合圖象得到在此范圍內(nèi)區(qū)域W內(nèi)整點(diǎn)有3個(gè),從而確定m的取值范圍為1≤m<2.
如圖:
![]()
(1)設(shè)直線與y軸的交點(diǎn)為C(0,b),
∵直線與兩坐標(biāo)軸圍成的三角形的面積是9,
∴
×6
=9,b=±3.
∵k<0,
∴b=3,
∵直線y=kx+b經(jīng)過(guò)點(diǎn)(6,0)和(0,3),
∴直線的表達(dá)式為y=﹣
x+3;
(2)①當(dāng)m=2時(shí),兩函數(shù)圖象的交點(diǎn)坐標(biāo)為方程組
的解,
∴A(3﹣
,
),B(3+
,
),觀察圖象可得區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo)為(3,1);
②當(dāng)y=
圖象經(jīng)過(guò)點(diǎn)(1,1)時(shí),則 m=1,
當(dāng)y=
圖象經(jīng)過(guò)點(diǎn)(2,1)時(shí),則 m=2,
∴觀察圖象可得區(qū)域W內(nèi)的整點(diǎn)有3個(gè)時(shí)1≤m<2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點(diǎn),過(guò)點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,
①求證:∠ODG=∠OCE;
②當(dāng)AB=1時(shí),求HC的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圖形
和圖形
上的兩點(diǎn)
、
,如果
上的所有點(diǎn)都在圖形
的內(nèi)部或邊上,則稱(chēng)
為圖形
的內(nèi)弧.特別的,在
中,
,
分別是
兩邊的中點(diǎn),如果
上的所有點(diǎn)都在
的內(nèi)部或邊上,則稱(chēng)
為
的中內(nèi)。ㄗⅲ
是指劣弧或半圓)在平面直角坐標(biāo)系中,已知點(diǎn)![]()
.設(shè)內(nèi)弧所在圓的圓心為
.
(1)當(dāng)
時(shí),連接
、
并延長(zhǎng).
①請(qǐng)?jiān)趫D1中畫(huà)出一條
的內(nèi)弧
;
②請(qǐng)直接寫(xiě)出
的內(nèi)弧
長(zhǎng)度的最大值__________.
(2)連接
、
并延長(zhǎng).
①當(dāng)
時(shí),請(qǐng)直接寫(xiě)出
的所有內(nèi)弧
所在圓的圓心
的縱坐標(biāo)的取值范圍__________;
②若直線
上存在
的內(nèi)弧
所在圓的圓心
,請(qǐng)求出
的取值范圍.
(3)作點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱(chēng)點(diǎn)
,作點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱(chēng)點(diǎn)
,連接
、
、
.令
,當(dāng)
的中內(nèi)弧
所在的圓的圓心
在
的外部時(shí),
的所有中內(nèi)弧
都存在,請(qǐng)直接寫(xiě)出
的取值范圍__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,A、C分別在y軸、x軸上,且OA=6cm,OC=8cm,點(diǎn)P從點(diǎn)A開(kāi)始以2cm/s的速度向B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始以1cm/s的速度向C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.
![]()
(1)如圖(1),當(dāng)t為何值時(shí),△BPQ的面積為4cm2?
(2)當(dāng)t為何值時(shí),以B、P、Q為頂點(diǎn)的三角形與△ABC相似?
(3)如圖(2),在運(yùn)動(dòng)過(guò)程中的某一時(shí)刻,反比例函數(shù)y=
的圖象恰好同時(shí)經(jīng)過(guò)P、Q兩點(diǎn),求這個(gè)反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)銷(xiāo)售是一種重要的銷(xiāo)售方式.某鄉(xiāng)鎮(zhèn)農(nóng)貿(mào)公司新開(kāi)設(shè)了一家網(wǎng)店,銷(xiāo)售當(dāng)?shù)剞r(nóng)產(chǎn)品.其中一種當(dāng)?shù)靥禺a(chǎn)在網(wǎng)上試銷(xiāo)售,其成本為每千克10元.公司在試銷(xiāo)售期間,調(diào)查發(fā)現(xiàn),每天銷(xiāo)售量y(kg)與銷(xiāo)售單價(jià)x(元)滿足如圖所示的函數(shù)關(guān)系(其中
).
![]()
(1)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)若農(nóng)貿(mào)公司每天銷(xiāo)售該特產(chǎn)的利潤(rùn)要達(dá)到3100元,則銷(xiāo)售單價(jià)x應(yīng)定為多少元?
(3)設(shè)每天銷(xiāo)售該特產(chǎn)的利潤(rùn)為W元,若
,求:銷(xiāo)售單價(jià)x為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的任意一點(diǎn)
我們定義:當(dāng)
為常數(shù),且
時(shí),點(diǎn)
為點(diǎn)
的“
對(duì)應(yīng)點(diǎn)”.
(1)點(diǎn)
的“
對(duì)應(yīng)點(diǎn)”
的坐標(biāo)為 ;若點(diǎn)
的“
對(duì)應(yīng)點(diǎn)”
的坐標(biāo)為
,且點(diǎn)
的縱坐標(biāo)為
,則點(diǎn)
的橫坐標(biāo)
;
(2)若點(diǎn)
的“
對(duì)應(yīng)點(diǎn)”
在第一、三象限的角平分線(原點(diǎn)除外)上,求
值;
(3)若點(diǎn)
在
軸的負(fù)半軸上,點(diǎn)
的“
對(duì)應(yīng)點(diǎn)”為
點(diǎn),且
,求
值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小星同學(xué)設(shè)計(jì)的“過(guò)直線外一點(diǎn)作已知直線的平行線”的尺規(guī)作圖過(guò)程:
![]()
已知:如圖,直線
和直線
外一點(diǎn)
求作:直線
,使得
作法:如圖
①在直線
上任取一點(diǎn)
,以點(diǎn)
為圓心,
為半徑畫(huà)圓,與直線
交于點(diǎn)
,
兩點(diǎn)
②連接
,
,延長(zhǎng)
交
于點(diǎn)![]()
③作
的平分線
,并反向延長(zhǎng)
所以直線
就是所求做的直線
根據(jù)小星同學(xué)設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),保全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:
,
(_______________________)(填推理的依據(jù))
是
的外角
.
平分
__________________
(____________________)(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AC、BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,S△AEF=4,則下列結(jié)論:①FD=2AF;②S△BCE=36;③S△ABE=16; ④△AEF∽△ACD,其中一定正確的是( )
![]()
A.①②③④B.①②C.②③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒
cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.
![]()
(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最小?并求出最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com