【題目】如圖所示,過點F(0,1)的直線y=kx+b與拋物線
交于M(x1,y1)和N(x2,y2)兩點(其中x1<0,x2<0).
⑴求b的值.
⑵求x1x2的值
⑶分別過M、N作直線l:y=-1的垂線,垂足分別是M1、N1,判斷△M1FN1的形狀,并證明你的結(jié)論.
⑷對于過點F的任意直線MN,是否存在一條定直線m,使m與以MN為直徑的圓相切.如果有,請法度出這條直線m的解析式;如果沒有,請說明理由.![]()
【答案】解:⑴b=1
⑵顯然
和
是方程組
的兩組解,解方程組消元得
,依據(jù)“根與系數(shù)關(guān)系”得
=-4
![]()
⑶△M1FN1是直角三角形是直角三角形,理由如下:
由題知M1的橫坐標(biāo)為x1,N1的橫坐標(biāo)為x2,設(shè)M1N1交y軸于F1,
則F1M1F1N1=-x1x2=4,而F F1=2,所以F1M1F1N1=F1F2,
另有∠M1F1F=∠FF1N1=90°,易證Rt△M1FF1∽Rt△N1FF1,得∠M1FF1=∠FN1F1,
故∠M1FN1=∠M1FF1+∠F1FN1=∠FN1F1+∠F1FN1=90°,所以△M1FN1是直角三角形.
⑷存在,該直線為y=-1.理由如下:
直線y=-1即為直線M1N1.
如圖,設(shè)N點橫坐標(biāo)為m,則N點縱坐標(biāo)為
,計算知NN1=
, NF=
,得NN1=NF
同理MM1=MF.
那么MN=MM1+NN1,作梯形MM1N1N的中位線PQ,由中位線性質(zhì)知PQ=
(MM1+NN1)=
MN,即圓心到直線y=-1的距離等于圓的半徑,所以y=-1總與該圓相切.
【解析】
此題第(1)問,很簡單就是代入求值,確定函數(shù)的系數(shù)。
(2)結(jié)合問題將一次、二次函數(shù)組合轉(zhuǎn)化為一元二次方程,利用“根與系數(shù)”的關(guān)系求解。
(3)直角三角形的判定涉及直角三角形相似的判定和性質(zhì)的運用。
(4)用函數(shù)的加減來求距離,梯形中位線。此題綜合性很強(qiáng),考查學(xué)生數(shù)形結(jié)合的思想,綜合了代數(shù)、幾何中的重點知識要學(xué)生有很好的綜合技能才可解決。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊
中,
,
是高
所在直線上的一個動點,連接
,將線段
繞點
逆時針旋轉(zhuǎn)60°得到
,連接
.在點
運動過程中,線段
長度的最小值是( )
![]()
A.12B.9C.6D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在AC上,過點D作DF⊥BC于點F,且BD=BC=AD,則∠CDF的度數(shù)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)
的圖象經(jīng)過點
,且與二次函數(shù)
的圖象相交于
、
兩點.
(1)求這兩個函數(shù)的表達(dá)式及
點的坐標(biāo);
(2)在同一坐標(biāo)系中畫出這兩個函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)
取何值時,一次函數(shù)的函數(shù)值小于二次函數(shù)的函數(shù)值;
(3)求△BOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2﹣4x+2)(x2﹣4x+6)+4進(jìn)行因式分解的過程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學(xué)第二步到第三步運用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結(jié)果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關(guān)系對應(yīng)的圖像線段AB表示甲出發(fā)不足2小時因故停車檢修),請根據(jù)圖像所提供的信息,解決如下問題:
(1)求乙車所行路程y與時間x的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知
、
兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以每小時60千米/時的速度沿此公路從
地勻速開往
地,乙車從
地沿此公路勻速開往
地,兩車分別到達(dá)目的地后停止甲、乙兩車相距的路程
(千米)與甲車的行駛時間
(時)之間的函數(shù)關(guān)系如圖所示:
![]()
(1)乙年的速度為______千米/時,
_____,
______.
(2)求甲、乙兩車相遇后
與
之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在矩形ABCD中,AB=12cm,BC=8cm.點E、F、G分別從點
A、B、C同時出發(fā),沿矩形的邊按逆時針方向移動,點E、G的速度均為2cm/s,點F的速
度為4cm/s,當(dāng)點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設(shè)移動開始后
第ts時,△EFG的面積為Scm2.
(1)當(dāng)t=1s時,S的值是多少?
(2)寫出S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點F在矩形的邊BC上移動,當(dāng)t為何值時,以點B、E、F為頂點的三角形與以C、F、G為頂點的三角形相似?請說明理由。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點D,BD=3,點P從點A出發(fā),以每秒1個單位長度的速度沿AB向終點B運動,過點P作PE∥AC交邊BC于點E,以PE為邊作Rt△PEF,使∠EPF=90°,點F在點P的下方,且EF∥AB.設(shè)△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點P的運動時間為t(秒)(t>0).
(1)求線段AC的長.
(2)當(dāng)△PEF與△ABD重疊部分圖形為四邊形時,求S與t之間的函數(shù)關(guān)系式.
(3)若邊EF與邊AC交于點Q,連結(jié)PQ,如圖②.
①當(dāng)PQ將△PEF的面積分成1:2兩部分時,求AP的長.
②直接寫出PQ的垂直平分線經(jīng)過△ABC的頂點時t的值.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com