分析 (1)先把括號(hào)內(nèi)通分和除法運(yùn)算化為乘法運(yùn)算得到原式=[$\frac{a(a-2)}{(a+2)(a-2)}$+$\frac{1}{(a+2)(a-2)}$]•$\frac{a+2}{a-1}$+$\frac{1}{a-2}$,再計(jì)算括號(hào)內(nèi)的加法運(yùn)算后約分,接著進(jìn)行同分母的加法運(yùn)算,然后把a(bǔ)的值代入計(jì)算即可;
(2)先把分母因式分解后約分,再進(jìn)行通分和同分母的加法運(yùn)算得到原式=$\frac{1}{a-3}$,接著根據(jù)三角形三邊的關(guān)系得到1<a<5,然后根據(jù)分式有意義的條件得到a的值為4,最后把a(bǔ)=4代入計(jì)算即可;
(3)先把括號(hào)內(nèi)通分和除法運(yùn)算化為乘法運(yùn)算得到原式=[$\frac{{x}^{2}}{x(x-2)}$-$\frac{4}{x(x-2)}$]•$\frac{x(x-1)}{x+2}$,再計(jì)算括號(hào)內(nèi)的簡(jiǎn)法運(yùn)算后約分得到原式=x-1,然后解方程x2-x-2=0和根據(jù)分式有意義的條件得到x=-1,再把x=-1代入計(jì)算即可.
解答 解:(1)原式=[$\frac{a(a-2)}{(a+2)(a-2)}$+$\frac{1}{(a+2)(a-2)}$]•$\frac{a+2}{a-1}$+$\frac{1}{a-2}$
=$\frac{(a-1)^{2}}{(a+2)(a-2)}$•$\frac{a+2}{a-1}$+$\frac{1}{a-2}$
=$\frac{a-1}{a-2}$+$\frac{1}{a-2}$
=$\frac{a}{a-2}$,
當(dāng)a=2+$\sqrt{2}$時(shí),原式=$\frac{2+\sqrt{2}}{2+\sqrt{2}-2}$=$\sqrt{2}$+1;
(2)原式=$\frac{a}{(a+2)(a-2)}$•$\frac{a+2}{a(a-3)}$+$\frac{1}{a-2}$
=$\frac{1}{(a-2)(a-3)}$+$\frac{a-3}{(a-2)(a-3)}$
=$\frac{a-2}{(a-2)(a-3)}$
=$\frac{1}{a-3}$,
∵a與2,3構(gòu)成△ABC的三邊,
∴1<a<5,
而a為整數(shù),
∴a=2,3,4,
∵a-2≠0且a-3≠0,
∴a的值為4,
當(dāng)a=4時(shí),原式=$\frac{1}{4-3}$=1;
(3)原式=[$\frac{{x}^{2}}{x(x-2)}$-$\frac{4}{x(x-2)}$]•$\frac{x(x-1)}{x+2}$
=$\frac{(x+2)(x-2)}{x(x-2)}$•$\frac{x(x-1)}{x+2}$
=x-1,
解方程x2-x-2=0得x1=2,x2=-1,
而x-2≠0,
∴x=-1,此時(shí)原式=-1-1=-2.
點(diǎn)評(píng) 本題考查了分式的化簡(jiǎn)求值:先把分式化簡(jiǎn)后,再把分式中未知數(shù)對(duì)應(yīng)的值代入求出分式的值.在化簡(jiǎn)的過(guò)程中要注意運(yùn)算順序和分式的化簡(jiǎn).化簡(jiǎn)的最后結(jié)果分子、分母要進(jìn)行約分,注意運(yùn)算的結(jié)果要化成最簡(jiǎn)分式或整式.注意分式有意義的條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 數(shù)字0也是單項(xiàng)式 | B. | 單項(xiàng)式a的系數(shù)與次數(shù)都是1 | ||
| C. | xy是二次單項(xiàng)式 | D. | -$\frac{ab}{3}$的系數(shù)是-3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com