【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角∠APQ為15°,山腳B處的俯角∠BPQ為60°,已知該山坡的坡度i(即tan∠ABC)為1:
,點P,H,B,C,A在同一個平面上,點H、B、C在同一條直線上,且PH丄HC.
(1)求出山坡坡角(∠ABC)的大。
(2)求A、B兩點間的距離(結果精確到0.1米,參考數(shù)據(jù):
≈1.732).
![]()
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線
與
軸交于
、
,交
軸于點
.
![]()
(1)拋物線頂點
的坐標為________;
(2)如圖2,連接
、
.將
沿
軸方向以每秒1個單位長度的速度向右平移得到
,運動時間為
秒.當
時,求
與
重疊面積
與
的函數(shù)解析式,并求出
的最大值;
(3)如圖3中,將
繞點
順時針旋轉一定的角度
得到
,邊
與拋物線的對稱軸交于點
.在旋轉過程中,是否存在一點
,使得
?若存在,直接寫出所有滿足條件的點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,過點A作AH⊥BC,分別交BD,BC于點E,H,F為ED的中點,∠BAF=120°,則∠C的度數(shù)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】只有1和它本身兩個因數(shù)且大于1的正整數(shù)叫做素數(shù).我國數(shù)學家陳景潤哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)都表示為兩個素數(shù)的和”,如10=3+7.
(1)從7,11,13,17這4個素數(shù)中隨機抽取一個,則抽到的數(shù)是11的概率是_____;
(2)從7,11,13,17這4個素數(shù)中隨機抽取1個數(shù),再從余下的3個數(shù)中隨機抽取1個數(shù),用畫樹狀圖或列表的方法,求抽到的兩個素數(shù)之和等于24的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點C,交OB于點D,若OA=4,則陰影部分的面積為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無滑動的滾動,第一次滾動到①的位置,點B的對應點記作B1;第二次滾動到②的位置,點B1的對應點記作B2;第三次滾動到③的位置,點B2的對應點記作B3;
;依次進行下去,則點B2020的坐標為__________.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠C=30°,過D作DE⊥BC于點E,延長CB至點F,使BF=CE,連接AF.若AF=4,CF=10
,則ABCD的面積為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為入口,F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以8m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應關系如圖2所示,結合題目信息,下列說法錯誤的是( )
![]()
A.立交橋總長為168 m
B.從F口出比從G口出多行駛48m
C.甲車在立交橋上共行駛11 s
D.甲車從F口出,乙車從G口出
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“扶貧攻堅”活動中,某單位計劃選購甲,乙兩種物品慰問貧困戶.已知甲物品的單價比乙物品的單價高10元,若用500元單獨購買甲物品與450元單獨購買乙物品的數(shù)量相同.求甲,乙兩種物品的單價各多少元?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com