欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.若KG2=KD•GE,sinE=
3
5
,AK=2
5
,F(xiàn)G長度是( 。
分析:如答圖1,連接OG.根據(jù)切線性質(zhì)及CD⊥AB,可以推出連接∠KGE=∠AKH=∠GKE,根據(jù)等角對等邊得到KE=GE;如答圖2所示,連接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用兩邊對應成比例且夾角相等的兩三角形相似可得出△GKD與△EKG相似,又利用同弧所對的圓周角相等得到∠C=∠AGD,可推知∠E=∠C,從而得到AC∥EF;
如答圖3所示,連接OG,OC.首先求出圓的半徑,根據(jù)勾股定理與垂徑定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的長度.
解答:解:(1)如答圖1,連接OG.
∵EG為切線,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
連接GD,如答圖2所示.
∵KG2=KD•GE,即
KG
GE
=
KD
KG
,
又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
連接OG,OC,如答圖3所示.
sinE=sin∠ACH=
3
5
,設AH=3t,則AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根據(jù)勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2
5
2,解得t=
2

設⊙O半徑為r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r-3t)2+(4t)2=r2,解得r=
25
2
6

∵EF為切線,∴△OGF為直角三角形,
在Rt△OGF中,OG=r=
25
2
6
,tan∠OFG=tan∠CAH=
CH
AH
=
4
3
,
∴FG=
OG
tan∠OFG
=
25
2
6
4
3
=
25
2
8

故選A.
點評:此題考查了切線的性質(zhì),相似三角形的判定與性質(zhì),垂徑定理,勾股定理,銳角三角函數(shù)定義,圓周角定理,平行線的判定,以及等腰三角形的判定,熟練掌握定理及性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,弦AD、BC交于點M,連CD、BD,若AB=1,則圖中長度等于sin∠CBD的線段是( 。
A、AMB、BMC、CDD、BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,以0A為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E.則下列四個結(jié)論:
①點D為AC的中點;②S△O′OE=
1
2
S△AOC;③
AC
=2
AD
;④四邊形O′DEO是菱形.其中正確的精英家教網(wǎng)結(jié)論是
 
.(把所有正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,AB是⊙O的直徑,C是AB延長線上一點,點D在⊙O上,且∠A=30°,∠ABD=2∠BDC.
(1)求證:CD是⊙O的切線;
(2)過點O作OF∥AD,分別交BD、CD于點E、F.若OB=2,求OE和CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,直線AD與⊙O相切于點A,點C在⊙O上,∠DAC=∠ACD,直線DC與AB的延長線交于點E.AF⊥ED于點F,交⊙O于點G.
(1)求證:DE是⊙O的切線;
(2)已知⊙O的半徑是6cm,EC=8cm,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,點C在⊙O上,∠BAC=43°,點P在線段OB上運動,設∠ACP=x,則x的取值范圍是
43°≤x≤90°
43°≤x≤90°

查看答案和解析>>

同步練習冊答案