【題目】已知拋物線y=3ax2+2bx+c.
(1)若a=b=1,c=﹣1,求拋物線與x軸公共點的坐標;
(2)若a=b=1,且當(dāng)﹣1<x<1時,拋物線與x軸有且只有一個公共點,求c的取值范圍.
【答案】
(1)解:∵a=b=1,c=﹣1,
∴拋物線的解析式為y=3x2+2x﹣1,
令y=3x2+2x﹣1=0,解得:x=﹣1或
,
∴拋物線與x軸的交點坐標為:(﹣1,0),(
,0)
(2)解:∵a=b=1,
∴解析式為y=3x2+2x+c.
∵對稱軸x=﹣
=﹣
,
∴當(dāng)﹣1<x<1時,拋物線與x軸有且只有一個公共點,
則①此公共點一定是頂點,
∴△=4﹣12c=0,
②一個交點的橫坐標小于等于﹣1,另一交點的橫坐標小于1而大于﹣1,
∴3﹣2+c≤0,3+2+c>0,
解得﹣5<c≤﹣1.
綜上所述,c的取值范圍是:c=
或﹣5<c≤﹣1
【解析】(1)將a、b、c的值代入拋物線后求得解析式,令y=0求出x的值就是交點坐標的橫坐標;(2)根據(jù)其在此范圍內(nèi)有一個交點,此時將兩個值代入,分別大于零和小于零,進而求出相應(yīng)的取值范圍.
【考點精析】認真審題,首先需要了解拋物線與坐標軸的交點(一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=
∠C中,能確定△ABC是直角三角形的條件有( )
A. 1個; B. 2個; C. 3個; D. 4個;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:
A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;
B超市:購物金額打8折.
某學(xué)校計劃購買某品牌的籃球做獎品,該品牌的籃球在A,B兩個超市的標價相同.根據(jù)商場的活動方式:
(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5個.請求出這種籃球的標價;
(2)學(xué)校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△APB中,AB=2
,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和△BPC,則四邊形PCDE面積的最大值是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形MNPQ中,動點R從點N出發(fā),沿著N→P→Q→M方向運動至點M處停下,設(shè)點R運動的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則下列說法不正確的是( )![]()
A.當(dāng)x=2時,y=5
B.矩形MNPQ的面積是20
C.當(dāng)x=6時,y=10
D.當(dāng)y=
時,x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點A在四邊形BCDE的外部時,記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )
![]()
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標系中,直線y=kx+b與x軸交于點A(6,0),與y軸交于點B,與直線y=2x交于點C(a,4).
(1)求點C的坐標及直線AB的表達式;
(2)如圖2,在(1)的條件下,過點E作直線l⊥x軸于點E,交直線y=2x于點F,交直線y=kx+b于點G,若點E的坐標是(4,0).
①求△CGF的面積;
②直線l上是否存在點P,使OP+BP的值最?若存在,直接寫出點P的坐標;若不存在,說明理由;
(3)若(2)中的點E是x軸上的一個動點,點E的橫坐標為m(m>0),當(dāng)點E在x軸上運動時,探究下列問題:
當(dāng)m取何值時,直線l上存在點Q,使得以A,C,Q為頂點的三角形與△AOC全等?請直接寫出相應(yīng)的m的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
![]()
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com