分析 (1)由平行線的性質(zhì)得出∠CDB=∠DAE,求出∠C=∠ADE=90°,AD=DC,由ASA證明△ADE≌△DCB即可;
(2)由全等三角形的性質(zhì)得出DE=BC=4,BD=AE=5,再證出DE∥BC,得出四邊形BCDE是平行四邊形,即可得出結(jié)論;
(3)根據(jù)勾股定理求出CD,得出AD,由矩形的性質(zhì)得出BE=CD,即可得出結(jié)果.
解答 (1)證明:∵AE∥BD,
∴∠CDB=∠DAE,
∵∠ACB=90°,DE⊥AC,
∴∠C=∠ADE=90°,
∴DE∥BC,
∵D為AC中點(diǎn),
∴AD=CD,
在△ADE和△DCB中,$\left\{\begin{array}{l}{∠ADB=∠C}&{\;}\\{AD=CD}&{\;}\\{∠DAE=∠CDB}&{\;}\end{array}\right.$,
∴△ADE≌△DCB(ASA);
(2)解:四邊形BCDE是矩形;理由如下:
由(1)得:△ADE≌△DCB,
∴DE=BC=4,BD=AE=5,
又∵∠ACB=90°,DE⊥AC,
∴DE∥BC,
∴四邊形BCDE是矩形;
(3)解:在Rt△DCB中,BC=4,BD=5,
由勾股定理得:CD=$\sqrt{B{D}^{2}-B{C}^{2}}$=3,
∴AD=CD=3,
∵四邊形BCDE是矩形,
∴CD=BE=3,
∴四邊形ACBE的周長是AC+BC+BE+AE=3+3+4+3+5=18.
點(diǎn)評 本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、全等三角形的判定與性質(zhì)、勾股定理;熟練掌握矩形的判定與性質(zhì),證明三角形全等是解決問題的關(guān)鍵,本題綜合性比較強(qiáng),有一定的難度.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x+y=50}\\{y=4x}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=50}\\{x=\frac{1}{4}y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=50}\\{y=\frac{1}{4}x}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x-y=50}\\{x=4y}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1或-$\frac{2}{3}$ | B. | 4或-1 | C. | 13或-2 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com