如圖,△ABC中,∠ABC=2∠C, BD平分∠ABC, 在BC上取點E,使連接AE交BD于點F,下列四個結(jié)論:(1)AC—BD=DE;(2)AC=2BF;(3)∠BAE—∠C=∠AED;(4)若AB=AG,且AB⊥AG,AG交BD于點H,則BE—EG=HG;其中正確結(jié)論個數(shù)是( )![]()
| A.1 | B.2 | C.3 | D.4 |
D
解析試題分析:由∠ABC=2∠C, BD平分∠ABC,可得∠ABD=∠DBC=∠C,則BD=DC,再有EB=AB,可得△ABD≌△EBD,△ABF≌△EBF即可得到AD=DE,∠BAF=∠BEA,從而可得(1)(2)正確;根據(jù)三角形外角的性質(zhì)可得(3)正確;由AB=AG,EB=AB,可得EB=AG,證得EG=AH,即可得到(4)正確,即可得到結(jié)論.
∵∠ABC=2∠C, BD平分∠ABC,
∴∠ABD=∠DBC=∠C,
∴BD=DC,
∵EB=AB,
∴△ABD≌△EBD,△ABF≌△EBF,
∴AD=DE,∠BAF=∠BEA,
∴AC—BD=DE,
∴AC=BD+DE=2BF,
∵AD=DE,
∴∠DAF=∠DEA,
∵∠BEA=∠DAF+∠C,
∴∠BAE=∠AED+∠C,
∴∠BAE—∠C=∠AED,
∵AB=AG,EB=AB,
∴EB=AG,
EG=AH,
∵AG—AH=HG
∴BE—EG=HG,
4個全部正確,故選D.
考點:本題考查的是角平分線的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握三角形外角的性質(zhì):三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com