科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在平面直角坐標系中,頂點為(
,
)的拋物線交
軸于
點,交
軸于
,
兩點(點
在點
的左側),已知
點坐標為(
,
)。
![]()
(1)求此拋物線的解析式;
(2)過點
作線段
的垂線交拋物線于點
,如果以點
為圓心的圓與直線
相切,請判斷拋物線的對稱軸
與⊙
有怎樣的位置關系,并給出證明;
(3)已知點
是拋物線上的一個動點,且位于
,
兩點之間,過點
作
軸的平行線與
交于點
問:當點
運動到什么位置時,線段
的長度最大?并求出此時△
的面積。
【解析】利用頂點為(
,
),
點坐標為(
,
)求出拋物線的解析式
(2)算出⊙
半徑,點C到對稱軸的距離,即可知道位置關系
(3)求出直線AC的解析式,設
,知道
,可求出PQ 的長度,從而求出最大值和P點坐標,再根據三角形的面積公式求出面積
查看答案和解析>>
科目:初中數學 來源:2010年黑龍江省大慶市中考數學試卷(解析版) 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com