分析 (1)先根據(jù)正方形性質(zhì)證△ADE≌△CDE得∠DAE=∠DCE,進(jìn)而根據(jù)∠DAE=∠G可得∠DCE=∠G,由∠CEF=∠GEC可得△ECF∽△EGC;
(2)由△ECF∽△EGC知$\frac{EF}{EC}=\frac{EC}{EG}$,可得EC的值,根據(jù)△ADE≌△CDE得AE=CE.
解答 解:(1)∵四邊形ABCD是正方形,
∴∠ADE=∠CDE,AD=CD,
在△ADE和△CDE中,
$\left\{\begin{array}{l}{AD=CD}\\{∠ADE=∠CDE}\\{DE=DE}\end{array}\right.$,
∴△ADE≌△CDE(SAS),
∴∠DAE=∠DCE,
∵AD∥BG,
∴∠DAE=∠G,
∴∠DCE=∠G,
又∵∠CEF=∠GEC,
∴△ECF∽△EGC;
(2)∵△ECF∽△EGC,
∴$\frac{EF}{EC}=\frac{EC}{EG}$,即$\frac{\sqrt{2}}{EC}=\frac{EC}{\sqrt{2}+\sqrt{8}}$,
解得:EC=6,
由(1)知△ADE≌△CDE,
∴AE=CE=6.
點(diǎn)評(píng) 本題主要考查正方形性質(zhì)、全等三角形判定與性質(zhì)、相似三角形判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com