(12分)如圖,點(diǎn)A(m,m+1),B(m+3,m-1)都在反比例函數(shù)
的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),
以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,
試求直線MN的函數(shù)表達(dá)式.
解:(1)由題意可知,
.
解,得 m=3.
………………………………3分
∴ A(3,4),B(6,2); ![]()
∴ k=4×3=12. ……………………………4分
(2)存在兩種情況,如圖:
①當(dāng)M點(diǎn)在x軸的正半軸上,
N點(diǎn)在y軸的正半軸
上時(shí),設(shè)M1點(diǎn)坐標(biāo)為(x1,0),N1點(diǎn)坐標(biāo)為(0,y1).
∵ 四邊形AN1M1B為平行四邊形,
∴ 線段N1M1可看作由線段AB向左平移3個(gè)單位,
再向下平移
2個(gè)單位得到的(也可看作向下平移2個(gè)單位,再向左平移3個(gè)單位得到的).
由(1)知A點(diǎn)坐標(biāo)為(3,4),B點(diǎn)坐標(biāo)為(6,2),
∴ N1點(diǎn)坐標(biāo)為(0,4-2),即N1(0,2);
M1點(diǎn)坐標(biāo)為(6-3,0),即M1
(3,0)
.
設(shè)直線M1N1的函數(shù)表達(dá)式為
,把x=3,y=0代入,解得
.
∴ 直線M1N1的函數(shù)表達(dá)式為
.
②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時(shí),設(shè)M2點(diǎn)坐標(biāo)為(x2,0),N2點(diǎn)坐標(biāo)為(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 線段M2N2與
線段N1M1關(guān)于原點(diǎn)O成中心對(duì)稱.
∴ M2點(diǎn)坐標(biāo)為(-3,0),N2點(diǎn)坐標(biāo)為(0,-2).
設(shè)直線M2N2的函數(shù)表達(dá)式為
,把x=-3,y=0代入,解得
,
∴ 直線M2N2的函數(shù)表達(dá)式為
.
所以,直線MN的函數(shù)表達(dá)式為
或
.
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,
∠BOC=
,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)
=150°時(shí),試判斷△AOD 的形狀,并說明理由;
(3)探究:當(dāng)
為多少度時(shí),△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市蕭山區(qū)臨浦片八年級(jí)上學(xué)期期中質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,
∠BOC=
,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)
=150°時(shí),試判斷△AOD 的形狀,并說明理由;
(3)探究:當(dāng)
為多少度時(shí),△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆浙江省杭州市蕭山區(qū)臨浦片八年級(jí)上學(xué)期期中質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,
∠BOC=
,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)
=150°時(shí),試判斷△AOD 的形狀,并說明理由;
(3)探究:當(dāng)
為多少度時(shí),△AOD是等腰三角形。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com