分析 (1)①如圖1,根據(jù)已知條件得到△ABC是等邊三角形,由等邊三角形的性質(zhì)得到AD=AB=BC,∠DAB=∠ABC=60°,由鄰補(bǔ)角的性質(zhì)得到∠EAD=∠FBD=120°,推出△ADE≌△BDF,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②證明:在BE上截取BG=BD,連接DG,得到△GBD是等邊三角形.同理,△ABC也是等邊三角形.求得AG=CD,通過(guò)△DGE≌△DBF,得到GE=BF,根據(jù)線段的和差即可得到結(jié)論;
(2)如圖3,連接DG,由(1)知,GE=BF,AG=CD,根據(jù)線段的和差和等量代換即可得到結(jié)論;如圖4,連接DG,由(1)知,GE=BF,AG=CD,根據(jù)線段的和差和等量代換即可得到結(jié)論.
解答
解:(1)①如圖1,∵BA=BC,∠EBD=60°,
∴△ABC是等邊三角形,
∴AD=AB=BC,∠DAB=∠ABC=60°,
∴∠EAD=∠FBD=120°,
∵DE=DF,
∴∠E=∠F,
在△AEC與△BCF中,$\left\{\begin{array}{l}{∠E=∠F}\\{∠EAD=∠FBD}\\{AD=BD}\end{array}\right.$,![]()
∴△ADE≌△BDF,
∴AE=BF;
故答案為:AE=BF;
②證明:在BE上截取BG=BD,連接DG,
∵∠EBD=60°,BG=BD,
∴△GBD是等邊三角形.
同理,△ABC也是等邊三角形.![]()
∴AG=CD,
∵DE=DF,∴∠E=∠F.
又∵∠DGB=∠DBG=60°,
∴∠DGE=∠DBF=120°,
在△DGE與△DBF中,$\left\{\begin{array}{l}{∠E=∠F}\\{∠EGD=∠FBD}\\{DG=BD}\end{array}\right.$,
∴△DGE≌△DBF,
∴GE=BF,
∴AE=BF+CD;![]()
(2)如圖3,連接DG,
由(1)知,GE=BF,AG=CD,
∴AE=EG-AG;
∴AE=BF-CD,
如圖4,連接DG,
由(1)知,GE=BF,AG=CD,
∴AE=AG-EG;
∴AE=CD-BF.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 36° | B. | 30° | C. | 20° | D. | 18° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com