如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD邊上的任意一點(不含端點A、D),連結PC,過點P作PE⊥PC交AB于E.
![]()
(1)證明△PAE∽△CDP;
(2)當點P在AD上運動時,對應的點E也隨之在AB上運動,設AP=x,BE=y(tǒng),求y與x的函數(shù)關系式及y的取值范圍;
(3)在線段AD上是否存在不同于P的點Q,使得QC⊥QE?若存在,求線段AP與AQ之間的數(shù)量關系;若不存在,請說明理由.
(1)證明見解析;(2)
,y<2;(3)存在,AP+AQ=3,理由見解析.
【解析】
試題分析:(1)利用矩形的性質可以得到∠A=∠D,利用PE⊥PC可以得到∠APE=∠DCP,從而證明兩三角形相似;
(2)利用上題證得的三角形相似,列出比例式,進而得到兩個變量之間的函數(shù)關系;
(3)假設存在符合條件的Q點,由于PE⊥PC,且四邊形ABCD是矩形,易證得△APE∽△DCP,可得AP•PD=AE•CD,同理可通過△AQE∽△DCQ得到AQ•QD=AE•DC,則AP•PD=AQ•QD,分別用PD、QD表示出AP、AQ,將所得等式進行適當變形即可求得AP、AQ的數(shù)量關系.
試題解析:(1)∵四邊形ABCD為矩形,∴∠A=∠D=90°,∴∠AEP+∠APE=90°,
∵PE⊥PC,∴∠APE+∠CPD=90°,
∴∠AEP=∠DPC,
∴△PAE∽△CDP;
(2)(解法一)∵AP=x,BE=y(tǒng),∴DP=3-x,AE=2-y. 4分
∵△PAE∽△CDP,∴
,
5分
即
,∴
.
6分
(解法二)∵AP=x,BE=y(tǒng),∴DP=3-x,AE=2-y. 4分
∵∠A=∠D=90°,∴tan∠AEP=
,
tan∠DPC=
,
∵∠AEP=∠DPC,∴tan∠AEP= tan∠DPC. ∴
=
,
即
,∴
.
(解法三)∵AP=x,BE=y(tǒng),∴DP=3-x,AE=2-y.
如圖1,連結CE, ∵∠A=∠B=∠D=90°,
![]()
∴AE2+AP2=PE2,PD2+CD2=CP2,BE2+BC2=CE2,
又∵∠CPE=90°,∴PE2+CP2=CE2,
∴AE2+AP2+PD2+CD2=BE2+BC2,
即(2-y)2+x2+(3-x)2+22=y2+32,整理得:
.
∵
=
,
∴當
時,y有最小值,y的最小值為
,
又∵點E在AB上運動(顯然點E與點A不重合),且AB=2,
∴
<2
綜上所述,
的取值范圍是
≤
<2;
(3)存在,理由如下:
如圖2,假設存在這樣的點Q,使得QC⊥QE.
![]()
由(1)得:△PAE∽△CDP,
∴
,
∴
,
∵QC⊥QE,∠D=90°,
∴∠AQE+∠DQC=90°,∠DQC+∠DCQ=90°,
∴∠AQE=∠DCQ.
又∵∠A=∠D=90°,
∴△QAE∽△CDQ,
∴
,
∴![]()
∴
,
即
,
∴
,
∴
,
∴
.
∵AP≠AQ,∴AP+AQ=3.又∵AP≠AQ,∴AP≠
,即P不能是AD的中點,
∴當P是AD的中點時,滿足條件的Q點不存在,
故當P不是AD的中點時,總存在這樣的點Q滿足條件,此時AP+AQ=3.
考點: 相似三與性質角形的判定;矩形的性質.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 5 |
| 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com