【題目】如圖,
,
平分
,
平分
,點(diǎn)
在
上,求證:
.
![]()
【答案】詳見解析
【解析】
在BC上取點(diǎn)F,使BF=BA,連接EF,由角平分線的性質(zhì)可以得出∠1=∠2,從而可以得出△ABE≌△FBE,可以得出∠A=∠5,進(jìn)而可以得出△CDE≌△CFE,就可以得出CD=CF,即可得出結(jié)論.
在BC上取點(diǎn)F,使BF=BA,連接EF,
∵BE、CE分別是∠ABC和∠BCD的平分線,
∴∠1=∠2,∠3=∠4,
在△ABE和△FBE中,
,
∴△ABE≌△FBE(SAS),
∴∠A=∠5,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠5+∠D=180,
∵∠5+∠6=180°,
∴∠6=∠D,
在△CDE和△CFE中,
,
∴△CDE≌△CFE(AAS),
∴CF=CD.
∵BC=BF+CF,
∴BC=AB+CD.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AB=8cm,AC=4cm,△BAC的平分線AD與BC的垂直平分線DG交于點(diǎn)D,過點(diǎn)D的直線DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:BE=CF;
(2)求AE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動課上,老師讓同學(xué)們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點(diǎn)的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認(rèn)為這種測量方法是否可行?請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店用2000元購進(jìn)一批學(xué)生書包,面市后發(fā)現(xiàn)供不應(yīng)求,商店又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批購進(jìn)數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元。
(1)求第一批購進(jìn)書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸上
,
兩點(diǎn)對應(yīng)數(shù)分別為-3,20.
(1)若
點(diǎn)為線段
的中點(diǎn),求
點(diǎn)對應(yīng)的數(shù).
(2)若點(diǎn)
以每秒3個單位,點(diǎn)
以每秒2個單位的速度同時出發(fā)向右運(yùn)動多長時間后
,
兩點(diǎn)相距2個單位長度?
(3)若點(diǎn)
,
同時分別以2個單位長度秒的速度相向運(yùn)動,點(diǎn)
(
點(diǎn)在原點(diǎn))同時以4個單位長度/秒的速度向右運(yùn)動.
①經(jīng)過
秒后
與
之間的距離
(用含
的式子表示)
②幾秒后點(diǎn)
到點(diǎn)
、點(diǎn)
的距離相等?求此時
對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了《整式的乘除》這一章之后,小明聯(lián)想到小學(xué)除法運(yùn)算時,會碰到余數(shù)的問題,那么類比多項(xiàng)式除法也會出現(xiàn)余式的問題.例如,如果一個多項(xiàng)式(設(shè)該多項(xiàng)式為
)除以
的商為
,余式為
,那么這個多項(xiàng)式是多少?他通過類比小學(xué)除法的運(yùn)算法則:被除數(shù)=除數(shù)×商+余數(shù),推理出多項(xiàng)式除法法則:被除式=除式×商+余式.
請根據(jù)以上材料,解決下列問題:
(1)請你幫小明求出多項(xiàng)式;
(2)小明繼續(xù)探索,如果一個多項(xiàng)式除以
商為
,余式為
,請你根據(jù)以上法則求出該多項(xiàng)式;
(3)上述過程中,小明把小學(xué)的除法運(yùn)算法則運(yùn)用在多項(xiàng)式除法運(yùn)算上,這里運(yùn)用的數(shù)學(xué)思想是_____.
A.類比思想 B.公理化思想 C.函數(shù)思想 D.?dāng)?shù)形結(jié)合思想
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)完“探索三角形全等的條件”一節(jié)后,小麗總結(jié)出很多全等三角形的模型,她設(shè)計(jì)了以下問題給同桌解決:做一個“
”字形框架
其中
足夠長,
于點(diǎn)
于點(diǎn)
點(diǎn)
從
出發(fā)向
運(yùn)動,點(diǎn)
從
出發(fā)向
運(yùn)動, 速度之比為
運(yùn)動到某一瞬間兩點(diǎn)同時停止,在
上取點(diǎn)
使
與
全等,則
的長度為________________![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),連接FE并延長,分別交CD的延長線于點(diǎn)M、N,∠BME=∠CNE,求證:AB=CD.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE___CF;(填“>”,“<”或“=”);EF,BE,AF三條線段的數(shù)量關(guān)系是:___.
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠α與∠BCA關(guān)系的條件___,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立。
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并證明。
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com