欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1點(diǎn)D為AC上一動(dòng)點(diǎn),連接BD,以BD為邊作等邊△BDE,EA的延長(zhǎng)線交BC的延長(zhǎng)線于F,設(shè)CD=n,
(1)當(dāng)n=1時(shí),則AF=
2
2
;
(2)當(dāng)0<n<1時(shí),如圖2,在BA上截取BH=AD,連接EH,求證:△AEH為等邊三角形.
分析:(1)根據(jù)三角形內(nèi)角和定理求出∠BAC=60°,再根據(jù)平角等于180°求出∠FAC=60°,然后求出∠F=30°,根據(jù)30°角所對(duì)的直角邊等于斜邊的一半求解即可;
(2)根據(jù)三角形的任意一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,從而得到∠ADE=∠HBE,然后根據(jù)邊角邊證明△ADE與△HBE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=HE,對(duì)應(yīng)角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根據(jù)等邊三角形的判定即可證明.
解答:(1)解:∵△BDE是等邊三角形,
∴∠EDB=60°,
∵∠ACB=90°,∠ABC=30°,
∴∠BAC=180°-90°-30°=60°,
∴FAC=180°-60°-60°=60°,
∴∠F=180°-90°-60°=30°,
∵∠ACB=90°,
∴∠ACF=180°-90°,
∴AF=2AC=2×1=2;

(2)證明:∵△BDE是等邊三角形,
∴BE=BD,∠EDB=∠EBD=60°,
在△BCD中,∠ADE+∠EDB=∠CBD+∠C,
即∠ADE+60°=∠CBD+90°,
∴∠ADE=30°+∠CBD,
∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,
∴∠HBE=30°+∠CBD,
∴∠ADE=∠HBE,
在△ADE與△HBE中,
BH=AD
∠ADE=∠HBE
BE=BD
,
∴△ADE≌△HBE(SAS),
∴AE=HE,∠AED=∠HEB,
∴∠AED+∠DEH=∠DEH+∠HEB,
即∠AEH=∠BED=60°,
∴△AEH為等邊三角形.
點(diǎn)評(píng):本題考查了30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)與判定,以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),(2)中求出
∠ADE=∠HBE是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,AC=12,BC=16,動(dòng)點(diǎn)P從A出發(fā)沿AC邊向點(diǎn)C以每秒3個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),沿著CB邊向點(diǎn)B以每秒4個(gè)單位長(zhǎng)的速度運(yùn)動(dòng).P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,△PCQ關(guān)于直線PQ對(duì)稱的圖形是△PDQ.設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)設(shè)四邊形PCQD面積為y,求y與t的函數(shù)關(guān)系式;
(2)t為何值時(shí),△PCQ與△ABC相似;
(3)如圖2,以C點(diǎn)為原點(diǎn),邊CB、CA所在直線分別為x軸、y軸建立直角坐標(biāo)系,當(dāng)PD∥AB時(shí),求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊精英家教網(wǎng)上一點(diǎn),連接BO交AD于F,OE⊥OB交BC邊于點(diǎn)E.
(1)求證:△ABF∽△COE;
(2)當(dāng)O為AC的中點(diǎn),
AC
AB
=2
時(shí),如圖2,求
OF
OE
的值;
(3)當(dāng)O為AC邊中點(diǎn),
AC
AB
=n
時(shí),請(qǐng)直接寫出
OF
OE
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,點(diǎn)0是BC的中點(diǎn),D為AB上一動(dòng)點(diǎn),延長(zhǎng)DO到E,且OE=OD,連接CE.
(1)如圖2,若D為AB的中點(diǎn),請(qǐng)判斷四邊形EDAC的形狀,并說明理由;
(2)如圖3,若∠A=60°,∠BOD=30°,四邊形EDAC是等腰梯形嗎?請(qǐng)說明理由;
(3)若AC=15,AB=25,請(qǐng)?jiān)趫D4中作出點(diǎn)D的位置使四邊形的EDAC周長(zhǎng)最小,請(qǐng)補(bǔ)全圖形并求出四邊形的EDAC的最小周長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ABC=90°,∠B=30°,AD為BC邊上的中線,E為AD上一動(dòng)點(diǎn),設(shè)DE=nEA,連接CE并延長(zhǎng)交AB于點(diǎn)F,過點(diǎn)F作FG∥AC交AD(或延長(zhǎng)線)于點(diǎn)G.
(1)當(dāng)n=1時(shí),則
FB
FA
=
 
,
EC
EF
=
 

(2)如圖2,當(dāng)n=
1
4
時(shí),求證:FG2=
5
2
FE•FC;
(3)如圖3,當(dāng)n=
 
時(shí),
FB
FA
=
1
2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8)DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求AC的長(zhǎng);
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn),且0<OG<4,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長(zhǎng)在圖1中所表示的實(shí)際意義;
②線段EF長(zhǎng)有可能等于3嗎?若能,請(qǐng)求出相應(yīng)的x的值,若不能請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案