分析 (1)由矩形的性質(zhì)可知AB=DC,∠A=∠C=90°,由翻折的性質(zhì)可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依據(jù)AAS可證明△DCE≌△BFE;
(2)先依據(jù)勾股定理求得BC的長(zhǎng),由全等三角形的性質(zhì)可知BE=DE,最后再△EDC中依據(jù)勾股定理可求得ED的長(zhǎng),從而得到BE的長(zhǎng).
解答 (1)∵四邊形ABCD為矩形,
∴AB=CD,∠A=∠C=90°
∵由翻折的性質(zhì)可知∠F=∠A,BF=AB,
∴BF=DC,∠F=∠C.
在△DCE與△BEF中,
$\left\{{\begin{array}{l}{∠F=∠C}\\{BF=CD}\\{∠BEF=∠DEC}\end{array}}\right.$
∴△DCE≌△BFE.
(2)在Rt△BDC中,由勾股定理得:BC=$\sqrt{D{B}^{2}-C{D}^{2}}$=3.
∵△DCE≌△BFE,
∴BE=DE.
設(shè)BE=DE=x,則EC=3-x.
在Rt△CDE中,CE2+CD2=DE2,即(3-x)2+($\sqrt{3}$)2=x2.
解得:x=2.
∴BE=2.
點(diǎn)評(píng) 本題主要考查的是翻折的性質(zhì)、勾股定理的應(yīng)用、矩形的性質(zhì),依據(jù)勾股定理列出關(guān)于x的方程是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,$-\frac{7}{4}$) | B. | ($\frac{7}{4}$,0) | C. | ($\frac{3}{2}$,0) | D. | ($\frac{7}{5}$,0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2(2a-b)2 | B. | 8(a-b)2 | C. | 4(a-b)2 | D. | 2(2a+b)2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com