欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設(shè)PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)證明:△PCE是等腰三角形;

(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關(guān)系;

(3)當(dāng)k=4時,求四邊形PEBF的面積S與x的函數(shù)關(guān)系式.x為何值時,S有最大值?并求出S的最大值.

考點:

等腰三角形的判定與性質(zhì);二次函數(shù)的最值;解直角三角形.

分析:

(1)根據(jù)等邊對等角可得∠A=∠C,然后根據(jù)兩直線平行,同位角相等求出∠CPE=∠A,從而得到∠CPE=∠C,即可得證;

(2)根據(jù)等腰三角形三線合一的性質(zhì)求出CM=CP,然后求出EM,同理求出FN、BH的長,再根據(jù)結(jié)果整理可得EM+FN=BH;

(3)分別求出EM、FN、BH,然后根據(jù)S△PCE,S△APF,S△ABC,再根據(jù)S=S△ABC﹣S△PCE﹣S△APF,整理即可得到S與x的關(guān)系式,然后利用二次函數(shù)的最值問題解答.

解答:

(1)證明:∵AB=BC,

∴∠A=∠C,

∵PE∥AB,

∴∠CPE=∠A,

∴∠CPE=∠C,

∴△PCE是等腰三角形;

(2)解:∵△PCE是等腰三角形,EM⊥CP,

∴CM=CP=,tanC=tanA=k,

∴EM=CM•tanC=•k=

同理:FN=AN•tanA=•k=4k﹣

由于BH=AH•tanA=×8•k=4k,

而EM+FN=+4k﹣=4k,

∴EM+FN=BH;

(3)解:當(dāng)k=4時,EM=2x,F(xiàn)N=16﹣2x,BH=16,

所以,S△PCE=x•2x=x2,S△APF=(8﹣x)•(16﹣2x)=(8﹣x)2,S△ABC=×8×16=64,

S=S△ABC﹣S△PCE﹣S△APF,

=64﹣x2﹣(8﹣x)2,

=﹣2x2+16x,

配方得,S=﹣2(x﹣4)2+32,

所以,當(dāng)x=4時,S有最大值32.

點評:

本題考查了等腰三角形的判定與性質(zhì),平行線的性質(zhì),銳角三角函數(shù),二次函數(shù)的最值問題,表示出各三角形的高線是解題的關(guān)鍵,也是本題的難點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案