欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,三角形ABC化簡|a-c|+|c-b|=________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
,同理有:
c
sinC
=
a
sinA
,
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC

即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=
60°
60°
;AC=
20
6
20
6
;
(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,
6
≈2.449

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設(shè)只有兩個人時,設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結(jié):
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設(shè)計多個可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關(guān)于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構(gòu)成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究與應(yīng)用:在學(xué)習(xí)幾何時,我們可以通過分離和構(gòu)造基本圖形,將幾何“模塊”化.例如在相似三角形中,K字形是非常重要的基本圖形,可以建立如下的“模塊”(如圖①):
(1)請就圖①證明上述“模塊”的合理性.已知:∠A=∠D=∠BCE=90°,求證:△ABC∽△DCE;
(2)請直接利用上述“模塊”的結(jié)論解決下面兩個問題:
①如圖②,已知點A(-2,1),點B在直線y=-2x+3上運動,若∠AOB=90°,求此時點B的坐標;
②如圖③,過點A(-2,1)作x軸與y軸的平行線,交直線y=-2x+3于點C、D,求點A關(guān)于直線CD的對稱點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,∠B=90°,點M、N分別在邊BA、BC上,且BM=BN.
(1)畫出直角三角形ABC關(guān)于直線MN對稱的三角形A′B′C′;
(2)如果AB=a,BC=b,BM=x,用a、b、x的代數(shù)式分別表示三角形AMA'的面積S1和四邊形AA′C′C的面積S,并化簡.

查看答案和解析>>

同步練習(xí)冊答案