分析 (1)由等腰直角三角形的性質(zhì)得到條件,判斷出△BAD≌△CAE即可;
(2)同(1)方法一樣;
(3)根據(jù)勾股定理計算即可.
解答 (1)證明:如圖1,![]()
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠DAE=90°,
∴∠DAE=∠CAE+∠DAC=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$
∴△BAD≌△CAE(SAS),
∴BD=CE,∠ACE=∠ABC=45°.
∴∠BCE=∠ACB+∠ACE=90°,
∴BD⊥CE;
(2)如圖2,![]()
將線段AD繞點A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.
與(1)同理可證CE=BD,CE⊥BD;
(3)2AD2=BD2+CD2,
∵∠EAD=90°AE=AD,
∴ED=$\sqrt{2}$AD
在RT△ECD中,ED2=CE2+CD2,
∴2AD2=BD2+CD2
點評 此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和等腰直角三角形的性質(zhì),判斷出△BAD≌△CAE是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 同位角相等 | B. | 全等三角形的對應(yīng)角相等 | ||
| C. | 若a=b,則|a|=|b| | D. | 等腰三角形的兩底角相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com