【題目】點(diǎn)A是函數(shù)y=﹣
(x<0)圖象上的一點(diǎn),連結(jié)AO并延長(zhǎng)交函數(shù)y=﹣
(x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AC=AO,則△ABC的面積為_____.
【答案】12.
【解析】
分別過(guò)A、B兩點(diǎn)作x軸的垂線(xiàn)段AE、BD,則△AOE面積=
×8=4,△BOD面積=
×2=1,由AO=AC,得到△AOC面積=2×△AOE面積=8.易知△OBD∽△OAE,根據(jù)面積比等于相似比的平方,于是得到結(jié)論.
解:分別過(guò)A、B兩點(diǎn)作x軸的垂線(xiàn)段AE、BD,
![]()
則△AOE面積=
×8=4,△BOD面積=
×2=1.
∵AO=AC,
∴△AOC面積=2×△AOE面積=8.
∵BD∥AE,
∴△OBD∽△OAE.
∴
,
∴
,
∴S△BOD=
S△AOC=4
∴△ABC面積=8+4=12,
故答案為:12.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),以AD為腰作等腰△ADE,且AD=AE, ∠BAC=∠DAE=30°,連接CE,若BD=2,S△DCE=
,則CD的長(zhǎng)為 ______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣
的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)y=x﹣2與兩坐標(biāo)軸分別交于點(diǎn)A,C,交y=
(x>0)于點(diǎn)P,PQ⊥x軸于點(diǎn)Q,CQ=1.
(1)求反比例函數(shù)解析式;
(2)平行于y軸的直線(xiàn)x=m分別交y=x﹣2,y=
(x>0)于點(diǎn)D,B(B在線(xiàn)段AP上方),若S△BOD=2,求m值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=
在第一象限圖象上一點(diǎn),連接OA,過(guò)點(diǎn)A作AB∥x軸(點(diǎn)B在點(diǎn)A右側(cè)),連接OB,若OB平分∠AOX,且點(diǎn)B的坐標(biāo)是(8,4),則k的值是( 。
![]()
A.6B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無(wú)論m取何值,原方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2
,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲乙兩名采購(gòu)員去同一家飼料公司分別購(gòu)買(mǎi)兩次飼料,兩次購(gòu)買(mǎi)飼料價(jià)格分別為m元/千克和n元/千克,且m≠n,兩名采購(gòu)員的采購(gòu)方式也不同,其中甲每次購(gòu)買(mǎi)1000千克,乙每次用去800元,而不管購(gòu)買(mǎi)多少飼料.
(1)甲、乙所購(gòu)飼料的平均單價(jià)各是多少?(用字母m、n表示)
(2)誰(shuí)的購(gòu)貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過(guò)點(diǎn)B作EB⊥AB,交CD于點(diǎn)E.若DE=6,則AD的長(zhǎng)為___________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖7,已知平行四邊形ABCD的周長(zhǎng)是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長(zhǎng)是關(guān)于
的方程
-
-6=0的一個(gè)根,求該方程的另一個(gè)根.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com