【題目】如圖,
為
的外接圓,
為
與
的交點(diǎn),
為線段
延長(zhǎng)線上一點(diǎn),且
.
![]()
(1)求證:直線
是
的切線.
(2)若
為
的中點(diǎn),
,
.
①求
的半徑;
②求
的內(nèi)心到點(diǎn)
的距離.
【答案】(1)證明見解析;(2)①
;②5.
【解析】
(1)連接AO,并延長(zhǎng)AO交⊙O于點(diǎn)F,連接CF,由圓周角定理的推論可得∠ACF=90°,可得∠F+∠FAC=90°,由∠EAC=∠ABC,可得∠EAC+∠FAC=90°,即可完成證明;
(2)①由垂徑定理可得OD⊥AB,AD=BD=8,由勾股定理可求⊙O的半徑;
②作∠CAB的平分線交CD于點(diǎn)H,連接BH,過點(diǎn)H作HM⊥AC,HN⊥BC,則點(diǎn)H是△ABC的內(nèi)心,由三角形內(nèi)心的性質(zhì)可得HM=HN=HD,由三角形的面積公式可求HD的值,即可完成解答.
(1)證明:如圖:連接AO,并延長(zhǎng)AO交⊙O于點(diǎn)F,連接CF,
∵AF是直徑,
∴∠ACF=90°,
∴∠F+∠FAC=90°,
∵∠F=∠ABC,∠ABC=∠EAC,
∴∠EAC=∠F,
∴∠EAC+∠FAC=90°,
∴∠EAF=90°,
∵AO是半徑,
∴直線AE是⊙O的切線;
![]()
(2)①如圖,連接AO,
∵D為AB的中點(diǎn),OD過圓心,
∴OD⊥AB,AD=BD=
AB=8,
∵AO2=AD2+DO2,
∴AO2=82+(AO-6)2,
∴AO=
,
∴⊙O的半徑為
;
![]()
②如圖,作∠CAB的平分線交CD于點(diǎn)H,連接BH,過點(diǎn)H作HM⊥AC,HN⊥BC,
∵OD⊥AB,AD=BD,
∴AC=BC,
∴CD平分∠ACB,即點(diǎn)H是△ABC的內(nèi)心,
∴MH=NH=DH,
在Rt△ACD中,
,
∵S△ABC=S△ACH+S△ABH+S△BCH,
∴
×16×6=
×10×MH+
×16×DH+
×10×NH,
∴DH=
,
∵OH=CO-CH=CO-( CD-DH),
∴
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國(guó)最高的獨(dú)自挺立的紀(jì)念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個(gè)觀光窗,兩窗的水平距離為100米,求拱門的最大高度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等邊△ABC中D點(diǎn)為AB邊上一動(dòng)點(diǎn),E為直線AC上一點(diǎn),將△ADE沿著DE折疊,點(diǎn)A落在直線BC上,對(duì)應(yīng)點(diǎn)為F,若AB=4,BF:FC=1:3,則線段AE的長(zhǎng)度為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=ax2的圖象先向下平移2個(gè)單位,再向右平移3個(gè)單位,截x軸所得的線段長(zhǎng)為4,則a=( )
A.1B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于A(3,0)、B(1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,3),點(diǎn)C.D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B,D.
![]()
(1)D點(diǎn)坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若拋物線的頂點(diǎn)與
軸的兩個(gè)交點(diǎn)構(gòu)成的三角形是直角三角形,則這種拋物線就稱為“美麗拋物線”.如圖,直線
:
經(jīng)過點(diǎn)
一組拋物線的頂點(diǎn)
,
,
,…
(
為正整數(shù)),依次是直線
上的點(diǎn),這組拋物線與
軸正半軸的交點(diǎn)依次是:
,
,
,…
(
為正整數(shù)).若
,當(dāng)
為( )時(shí),這組拋物線中存在美麗拋物線.
![]()
A.
或
B.
或
C.
或
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校開設(shè)“慈善基金”活動(dòng)以來,受到同學(xué)們的廣泛幫助,學(xué)校為了解全校學(xué)生捐款的情況,隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并制成如圖不完整的統(tǒng)計(jì)圖表.
![]()
捐款金額 | 1元 | 2元 | 3元 | 4元 | 5元及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)a= ,b= ;
(2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中的3元所對(duì)應(yīng)的圓心角的度數(shù);
(4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計(jì)該校學(xué)生在5元及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片
中,
,
,將
沿
折疊,使點(diǎn)
落在點(diǎn)
處,
交
于點(diǎn)
,則
的長(zhǎng)等于( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com