| A. | $\frac{2}{3}$cm或$\frac{2}{3}\sqrt{3}$cm | B. | $\frac{2}{3}\sqrt{3}$cm | C. | $\frac{4}{3}$cm或$\frac{2}{3}\sqrt{3}$cm | D. | $\frac{2}{3}$cm或$\frac{4}{3}$cm |
分析 根據(jù)題意畫出圖形,過P作PN⊥BC,交BC于點(diǎn)N,由ABCD為正方形,得到AD=DC=PN,在直角三角形ADE中,利用銳角三角函數(shù)定義求出DE的長(zhǎng),進(jìn)而利用勾股定理求出AE的長(zhǎng),根據(jù)M為AE中點(diǎn)求出AM的長(zhǎng),利用HL得到三角形ADE與三角形PQN全等,利用全等三角形對(duì)應(yīng)邊,對(duì)應(yīng)角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN與DC平行,得到∠PFA=∠DEA=60°,進(jìn)而得到PM垂直于AE,在直角三角形APM中,根據(jù)AM的長(zhǎng),利用銳角三角函數(shù)定義求出AP的長(zhǎng),進(jìn)而得出DP的長(zhǎng).
解答
解:根據(jù)題意畫出圖形,過P作PN⊥BC,交BC于點(diǎn)N,
∵四邊形ABCD為正方形,
∴AD=DC=PN,
在Rt△ADE中,∠DAE=30°,AD=2cm,
∴tan30°=$\frac{DE}{AD}$,即DE=$\frac{2\sqrt{3}}{3}$cm,
根據(jù)勾股定理得:AE=$\sqrt{{2}^{2}+(\frac{2\sqrt{3}}{3})^{2}}=\frac{4\sqrt{3}}{3}$cm,
∵M(jìn)為AE的中點(diǎn),
∴AM=$\frac{1}{2}$AE=$\frac{2\sqrt{3}}{3}$cm,
在Rt△ADE和Rt△PNQ中,
$\left\{\begin{array}{l}{AD=PN}\\{AE=PQ}\end{array}\right.$,
∴Rt△ADE≌Rt△PNQ(HL),
∴DE=NQ,∠DAE=∠NPQ=30°,
∵PN∥DC,
∴∠PFA=∠DEA=60°,
∴∠PMF=90°,即PM⊥AF,
在Rt△AMP中,∠MAP=30°,cos30°=$\frac{AM}{AP}$,
∴AP=$\frac{AM}{cos30°}=\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{3}}{2}}=\frac{4}{3}$cm,
所以PD=2-$\frac{4}{3}$=$\frac{2}{3}$或$\frac{4}{3}$.
故選D.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2m | B. | $\sqrt{3}$m | C. | $\sqrt{2}$m | D. | $\sqrt{5}$m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 9.05×106 | B. | 0.905×106 | C. | 0.905×107 | D. | 9.05×107 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com