【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:y=kx+b與y軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
![]()
(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);
(2)點E是直線l上方的拋物線上的一點,若△ACE的面積的最大值為
,求a的值;
(3)設(shè)P是拋物線對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
【答案】(1)y=ax+a;(2)a=﹣
;(3)能,P點的坐標為P1(1,﹣4),P2(1,﹣
).
【解析】
試題分析:(1)由拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于兩點A、B,求得A點的坐標,作DF⊥x軸于F,根據(jù)平行線分線段成比例定理求得D的坐標,然后利用待定系數(shù)法法即可求得直線l的函數(shù)表達式.
(2)設(shè)點E(m,a(m+1)(m﹣3)),yAE=k1x+b1,利用待定系數(shù)法確定yAE=a(m﹣3)x+a(m﹣3),從而確定S△ACE=
(m+1)[a(m﹣3)﹣a]=
(m﹣
)2﹣
a,根據(jù)最值確定a的值即可;
(3)分以AD為對角線、以AC為邊,AP為對角線、以AC為邊,AQ為對角線三種情況利用矩形的性質(zhì)確定點P的坐標即可.
解:(1)令y=0,則ax2﹣2ax﹣3a=0,
解得x1=﹣1,x2=3
∵點A在點B的左側(cè),
∴A(﹣1,0),
如圖1,作DF⊥x軸于F,
∴DF∥OC,
∴
=
,
∵CD=4AC,
∴
=
=4,
∵OA=1,
∴OF=4,
∴D點的橫坐標為4,
代入y=ax2﹣2ax﹣3a得,y=5a,
∴D(4,5a),
把A、D坐標代入y=kx+b得
,
解得
,
∴直線l的函數(shù)表達式為y=ax+a.
(2)設(shè)點E(m,a(m+1)(m﹣3)),yAE=k1x+b1,
則
,
解得:
,
∴yAE=a(m﹣3)x+a(m﹣3),
∴S△ACE=
(m+1)[a(m﹣3)﹣a]=
(m﹣
)2﹣
a,
∴有最大值﹣
a=
,
∴a=﹣
;
(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,
解得x1=﹣1,x2=4,
∴D(4,5a),
∵y=ax2﹣2ax﹣3a,∴拋物線的對稱軸為x=1,
設(shè)P1(1,m),
①若AD是矩形的一條邊,
由AQ∥DP知xD﹣xP=xA﹣xQ,可知Q點橫坐標為﹣4,將x=﹣4帶入拋物線方程得Q(﹣4,21a),
m=yD+yQ=21a+5a=26a,則P(1,26a),
∵四邊形ADPQ為矩形,∴∠ADP=90°,
∴AD2+PD2=AP2,
∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,
即a2=
,∵a<0,∴a=﹣
,
∴P1(1,﹣
).
![]()
②若AD是矩形的一條對角線,
則線段AD的中點坐標為(
,
),Q(2,﹣3a),
m=5a﹣(﹣3a)=8a,則P(1,8a),
∵四邊形ADPQ為矩形,∴∠APD=90°,
∴AP2+PD2=AD2,
∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,
PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,
AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
∴22+(8a)2+32+(3a)2=52+(5a)2,
解得a2=
,∵a<0,∴a=﹣
,
∴P2(1,﹣4).
綜上可得,P點的坐標為P1(1,﹣4),P2(1,﹣
).
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于等邊三角形的描述錯誤的是( )
A.三邊相等的三角形是等邊三角形
B.三個角相等的三角形是等邊三角形
C.有一個角是60°的三角形是等邊三角形
D.有兩個角是60°的三角形是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算中,正確的是( 。
A. ﹣5a+2a=﹣3a B. 2x﹣6x+5x=1 C. a5+a2=a7 D. 3a+2b=5ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(-4,-3)關(guān)于原點對稱的點的坐標是( )
A.(4,3)
B.(-4,3)
C.(-4,-3)
D.(4,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次夏令營活動中,小玲從營地A出發(fā),沿北偏東60°方向走了
m到達B點,然后再沿北偏西30°方向走了500m到達目的地C點.(1)求A,C兩點之間的距離.(2)確定目的地C在營地A什么方向.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,2016年長春市接待旅游人數(shù)約67000000人次,67000000這個數(shù)用科學(xué)記數(shù)法表示為( )
A.67×106
B.6.7×105
C.6.7×107
D.6.7×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,AB的垂直平分線DE交AC于點E,CE的垂直平分線正好經(jīng)過點B,與AC相交于點F,求∠ A的度數(shù).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com